1,483 research outputs found
Field-induced incommensurate phase in the strong-rung spin ladder with ferromagnetic legs
We report magnetization, specific heat, and NMR measurements of 3-Br-4-F-V
[=3-(3-bromo-4-fluorophenyl)-1,5-diphenylverdazyl], a strong-rung S=1/2
Heisenberg spin ladder with ferromagnetic leg interactions. We explain the
magnetic and thermodynamic properties based on the strong-rung regime.
Furthermore, we find a field-induced successive phase transition in the
specific heat and the nuclear spin-lattice relaxation rate 1/T1. 19F-NMR
spectra for higher- and lower-temperature phases indicate partial magnetic
order and incommensurate long-range order, respectively, evidencing the
presence of frustration due to weak interladder couplings.Comment: 12 pages, 3 figure
Orbital Order Effect of Two-Dimensional Spin Gap System for CaV4O9
Effects of possible orbital order in magnetic properties of two-dimensional
spin gap system for CaVO are investigated theoretically. After
analyzing experimental data, we show that single orbital models assumed in the
literature are insufficient to reproduce the data. To understand the origin of
the discrepancy, we assume that in state of V, and
orbitals have substantial contributions in the lowest-energy atomic level which
leads to a double-degeneracy. We study possible configurations of the orbital
order. By exact diagonalization and perturbation expansion, we calculate the
susceptibility, wavenumber dependence of low-lying excitations and equal-time
spin-spin correlations which is related to integrated intensity of the neutron
inelastic scattering. These quantities sensitively depend on the configuration
of the orbital order. The calculated results for some configurations of the
orbital order reproduce many experimental results much better than the previous
single-orbital models. However some discrepancy still remains to completely
reproduce all of the reported experimental results. To understand the origin of
these discrepancies, we point out the possible importance of the partially
occupied orbital in addition to orbital order of partially filled
and orbitals.Comment: 19 pages LATEX, 15 postscript figures, using jpsj.sty,to be published
in J.Phys.Soc.Jpn. Vol.67 No.2 (1998
Various series expansions for a Heisenberg antiferromagnet model for SrCu(BO)
We use a variety of series expansion methods at both zero and finite
temperature to study an antiferromagnetic Heisenberg spin model proposed
recently by Miyahara and Ueda for the quasi two-dimensional material
SrCu(BO). We confirm that this model exhibits a first-order quantum
phase transition at T=0 between a gapped dimer phase and a gapless N\'eel phase
when the ratio of nearest and next-nearest neighbour interactions is
varied, and locate the transition at . Using longer series we are
able to give more accurate estimates of the model parameters by fitting to the
high temperature susceptibility data.Comment: RevTeX, 13 figure
The Association Between Social Networks and Self-rated risk of HIV Infection among Secondary School Students in Moshi Municipality, Tanzania.
Abstract This study describes the social networks of secondary school students in Moshi Municipality, and their association with self-rated risk of human immunodeficiency virus (HIV) infection. A cross-sectional analytical study was conducted among 300 students aged 15-24 years in 5 secondary schools in Moshi, Tanzania. Bonding networks were defined as social groupings of students participating in activities within the school, while bridging networks were groups that included students participating in social groupings from outside of the school environs. A structured questionnaire was used to ask about participation in bonding and bridging social networks and self-rated HIV risk behavior. More participants participated in bonding networks (72%) than in bridging networks (29%). Participation in bridging networks was greater among females (25%) than males (12%, p < .005). Of 300 participants, 88 (29%) were sexually experienced, and of these 62 (70%) considered themselves to be at low risk of HIV infection. Factors associated with self-rated risk of HIV included: type of school (p < .003), family structure (p < .008), being sexually experienced (p < .004), having had sex in the past three months (p < .009), having an extra sexual partner (p < .054) and non-condom use in last sexual intercourse (p < .001), but not the presence or type of social capital. The study found no association between bonding and bridging social networks on self-rated risk of HIV among study participants. However, sexually experienced participants rated themselves at low risk of HIV infection despite practicing unsafe sex. Efforts to raise adolescents' self-awareness of risk of HIV infection through life skills education and HIV/acquired immunodeficiency syndrome risk reduction strategies may be beneficial to students in this at-risk group
Infrared and Raman spectra of LiV2O5 single crystals
The phonon dynamics of LiV2O5 single crystals is studied using infrared and
Raman spectroscopy techniques. The infrared-active phonon frequencies and
dielectric constants are obtained by oscillator fitting procedure of the
reflectivity data measured at room temperature. The Raman scattering spectra
are measured at room temperature and at T=10 K in all nonequivalent polarized
configurations. The assignment of the phonons is done by comparing the infrared
and Raman spectra of LiV2O5 and NaV2O5. The factor-group-analysis of the LiV2O5
crystal symmetry and of its constituent layers is performed to explain the
symmetry properties of the observed modes. We concluded that layer symmetry
dominates in the vibrational properties of this compound.Comment: 10 pages, 5 figure
Recombination dynamics of a human Y-chromosomal palindrome:rapid GC-biased gene conversion, multi-kilobase conversion tracts, and rare inversions
The male-specific region of the human Y chromosome (MSY) includes eight large inverted repeats (palindromes) in which arm-to-arm similarity exceeds 99.9%, due to gene conversion activity. Here, we studied one of these palindromes, P6, in order to illuminate the dynamics of the gene conversion process. We genotyped ten paralogous sequence variants (PSVs) within the arms of P6 in 378 Y chromosomes whose evolutionary relationships within the SNP-defined Y phylogeny are known. This allowed the identification of 146 historical gene conversion events involving individual PSVs, occurring at a rate of 2.9-8.4×10(-4) events per generation. A consideration of the nature of nucleotide change and the ancestral state of each PSV showed that the conversion process was significantly biased towards the fixation of G or C nucleotides (GC-biased), and also towards the ancestral state. Determination of haplotypes by long-PCR allowed likely co-conversion of PSVs to be identified, and suggested that conversion tract lengths are large, with a mean of 2068 bp, and a maximum in excess of 9 kb. Despite the frequent formation of recombination intermediates implied by the rapid observed gene conversion activity, resolution via crossover is rare: only three inversions within P6 were detected in the sample. An analysis of chimpanzee and gorilla P6 orthologs showed that the ancestral state bias has existed in all three species, and comparison of human and chimpanzee sequences with the gorilla outgroup confirmed that GC bias of the conversion process has apparently been active in both the human and chimpanzee lineages
Exchange interactions and magnetic properties of the layered vanadates CaV2O5, MgV2O5, CaV3O7 and CaV4O9
We have performed ab-initio calculations of exchange couplings in the layered
vanadates CaV2O5, MgV2O5, CaV3O7 and CaV4O9. The uniform susceptibility of the
Heisenberg model with these exchange couplings is then calculated by quantum
Monte Carlo method; it agrees well with the experimental measurements. Based on
our results we naturally explain the unusual magnetic properties of these
materials, especially the huge difference in spin gap between CaV2O5 and
MgV2O5, the unusual long range order in CaV3O7 and the "plaquette resonating
valence bond (RVB)" spin gap in CaV4O9
Single-hole dynamics in dimerized and frustrated spin-chains
We present a unified account for the coupled single-hole- and spin-dynamics
in the spin-gap phase of dimerized and frustrated spin-chains and two-leg spin
ladders. Based on the strong dimer-limit of a one-dimensional
--model a diagrammatic approach is presented which employs a
mapping of the spin-Hamiltonian onto a pseudo-fermion bond-boson model. Results
for the single-hole spectrum are detailed. A finite quasi-particle weight is
observed and studied for a variety of system parameters. A comparison with
existing exact diagonalization data is performed and good agreement is found.Comment: 10 pages, 12 figure
Biomarkers of environmental tobacco smoke exposure.
Biomarkers are desirable for quantitating human exposure to environmental tobacco smoke (ETS) and for predicting potential health risks for exposed individuals. A number of biomarkers of ETS have been proposed. At present cotinine, measured in blood, saliva, or urine, appears to be the most specific and the most sensitive biomarker. In nonsmokers with significant exposure to ETS, cotinine levels in the body are derived primarily from tobacco smoke, can be measured with extremely high sensitivity, and reflect exposure to a variety of types of cigarettes independent of machine-determined yield. Under conditions of sustained exposure to ETS (i.e., over hours or days), cotinine levels reflect exposure to other components of ETS. Supporting the validity of cotinine as a biomarker, cotinine levels have been positively correlated to the risks of some ETS-related health complications in children who are not cigarette smokers
Spallation reactions. A successful interplay between modeling and applications
The spallation reactions are a type of nuclear reaction which occur in space
by interaction of the cosmic rays with interstellar bodies. The first
spallation reactions induced with an accelerator took place in 1947 at the
Berkeley cyclotron (University of California) with 200 MeV deuterons and 400
MeV alpha beams. They highlighted the multiple emission of neutrons and charged
particles and the production of a large number of residual nuclei far different
from the target nuclei. The same year R. Serber describes the reaction in two
steps: a first and fast one with high-energy particle emission leading to an
excited remnant nucleus, and a second one, much slower, the de-excitation of
the remnant. In 2010 IAEA organized a worskhop to present the results of the
most widely used spallation codes within a benchmark of spallation models. If
one of the goals was to understand the deficiencies, if any, in each code, one
remarkable outcome points out the overall high-quality level of some models and
so the great improvements achieved since Serber. Particle transport codes can
then rely on such spallation models to treat the reactions between a light
particle and an atomic nucleus with energies spanning from few tens of MeV up
to some GeV. An overview of the spallation reactions modeling is presented in
order to point out the incomparable contribution of models based on basic
physics to numerous applications where such reactions occur. Validations or
benchmarks, which are necessary steps in the improvement process, are also
addressed, as well as the potential future domains of development. Spallation
reactions modeling is a representative case of continuous studies aiming at
understanding a reaction mechanism and which end up in a powerful tool.Comment: 59 pages, 54 figures, Revie
- …