27,313 research outputs found
Parallel scheduling of recursively defined arrays
A new method of automatic generation of concurrent programs which constructs arrays defined by sets of recursive equations is described. It is assumed that the time of computation of an array element is a linear combination of its indices, and integer programming is used to seek a succession of hyperplanes along which array elements can be computed concurrently. The method can be used to schedule equations involving variable length dependency vectors and mutually recursive arrays. Portions of the work reported here have been implemented in the PS automatic program generation system
Micro-geographic risk factors for malarial infection.
BACKGROUND: Knowledge of geography is integral to the study of insect-borne infectious disease such as malaria. This study was designed to evaluate whether geographic parameters are associated with malarial infection in the East Sepik province of Papua New Guinea (PNG), a remote area where malaria is a major cause of morbidity and mortality.
METHODS: A global positioning system (GPS) unit was used at each village to collect elevation, latitude and longitude data. Concurrently, a sketch map of each village was generated and the villages were sub-divided into regions of roughly equal populations. Blood samples were taken from subjects in each region using filter paper collection. The samples were later processed using nested PCR for qualitative determination of malarial infection. The area was mapped using the GPS-information and overlaid with prevalence data. Data tables were examined using traditional chi square statistical techniques. A logistic regression analysis was then used to determine the significance of geographic risk factors including, elevation, distance from administrative centre and village of residence.
RESULTS: Three hundred and thirty-two samples were included (24% of the total estimated population). Ninety-six were positive, yielding a prevalence of 29%. Chi square testing within each village found a non-random distribution of cases across sub-regions (p < 0.05). Multivariate logistic regression techniques suggested malarial infection changed with elevation (OR = 0.64 per 10 m, p < 0.05) and distance from administrative centre (OR = 1.3 per 100 m, p < 0.05).
CONCLUSION: These results suggest that malarial infection is significantly and independently associated with lower elevation and greater distance from administrative centre in a rural area in PNG. This type of analysis can provide information that may be used to target specific areas in developing countries for malaria prevention and treatment
The ORSER System for the Analysis of Remotely Sensed Digital Data
The main effort of the University of Pennsylvania's Office for Remote Sensing of Earth Resources (ORSER) is the processing, analysis, and interpretation of multispectral data, most often supplied by NASA in the form of imagery and digital data. The facilities used for data reduction and image enhancement are described as well as the development of algorithms for producing a computer map showing various environmental and land use characteristics of data points in the analyzed scenes. The application of an (ORSER) capability for statewide monitoring of gypsy moth defoliation is discussed
Hollow cathode plasma penetration study Final report
Hollow cathode electron beam discharge for penetrating plasma sheath around reentry vehicl
Liquid-Drop Model and Quantum Resistance Against Noncompact Nuclear Geometries
The importance of quantum effects for exotic nuclear shapes is demonstrated.
Based on the example of a sheet of nuclear matter of infinite lateral
dimensions but finite thickness, it is shown that the quantization of states in
momentum space, resulting from the confinement of the nucleonic motion in the
conjugate geometrical space, generates a strong resistance against such a
confinement and generates restoring forces driving the system towards compact
geometries. In the liquid-drop model, these quantum effects are implicitly
included in the surface energy term, via a choice of interaction parameters, an
approximation that has been found valid for compact shapes, but has not yet
been scrutinized for exotic shapes.Comment: 9 pages with 3 figure
Space station automation of common module power management and distribution, volume 2
The new Space Station Module Power Management and Distribution System (SSM/PMAD) testbed automation system is described. The subjects discussed include testbed 120 volt dc star bus configuration and operation, SSM/PMAD automation system architecture, fault recovery and management expert system (FRAMES) rules english representation, the SSM/PMAD user interface, and the SSM/PMAD future direction. Several appendices are presented and include the following: SSM/PMAD interface user manual version 1.0, SSM/PMAD lowest level processor (LLP) reference, SSM/PMAD technical reference version 1.0, SSM/PMAD LLP visual control logic representation's (VCLR's), SSM/PMAD LLP/FRAMES interface control document (ICD) , and SSM/PMAD LLP switchgear interface controller (SIC) ICD
Effective potential for Polyakov loops from a center symmetric effective theory in three dimensions
We present lattice simulations of a center symmetric dimensionally reduced
effective field theory for SU(2) Yang Mills which employ thermal Wilson lines
and three-dimensional magnetic fields as fundamental degrees of freedom. The
action is composed of a gauge invariant kinetic term, spatial gauge fields and
a potential for the Wilson line which includes a "fuzzy" bag term to generate
non-perturbative fluctuations. The effective potential for the Polyakov loop is
extracted from the simulations including all modes of the loop as well as for
cooled configuration where the hard modes have been averaged out. The former is
found to exhibit a non-analytic contribution while the latter can be described
by a mean-field like ansatz with quadratic and quartic terms, plus a
Vandermonde potential which depends upon the location within the phase diagram.Comment: 10 pages, 22 figures, v2: published version (minor clarifications,
update of reference list
MEASUREMENT OF DYNAMIC SURFACE TENSION IN BUBBLING SYSTEMS
The static and dynamic surface tension was measured for aqueous solutions of eleven surface-active agents for the purpose of studying the effect of surface tension upon boiling heat transfer. The surfactants were chosen from the Tween, Aerosol, and Hyonic series. Dynamic surface tension, at T = 90 deg C, was investigated by observing the volume and frequency for air bubbles forming from a submerged orifice. Static surface tension, at T = 100 deg C, was measured using a duNouy tensiometer. In all cases, the dynamic surface tension for solutions of these surface active agents was less than the value for pure water, greater than the static value for the same concentration, and was a smoothly decreasing function of concentration. (auth
- …