8,053 research outputs found

    Quark Model and Neutral Strange Secondary Production by Neutrino and Antineutrino Beams

    Full text link
    The experimental data on K0K^0 and Λ\Lambda production by ν\nu and νˉ\bar{\nu} beams are compared with the predictions of quark model assuming that the direct production of secondaries dominates. Disagreement of these predictions with the data allows one to suppose that there exists considerable resonance decay contribution to the multiplicities of produced secondaries.Comment: 6 pages, no figures, 2 table

    The effect of the relative nuclear size on the nucleus-nucleus interactions

    Get PDF
    The experimental data on the interactions of light nuclei (d, He(4), C(12)) at the momentum 4.2 GeV/cA with the carbon nuclei were taken in the 2-m propane bubble chamber. The distributions in the number of interacting nucleons, the spectra of protons, the mean energies of secondary pions and protons, the mean fractions of energy transferred to the pion and nucleon components are presented. The results of the investigation of the mechanism of nucleus-nucleus interactions can be used to calculate the nuclear cascades in the atmosphere

    The theoretical DFT study of electronic structure of thin Si/SiO2 quantum nanodots and nanowires

    Full text link
    The atomic and electronic structure of a set of proposed thin (1.6 nm in diameter) silicon/silica quantum nanodots and nanowires with narrow interface, as well as parent metastable silicon structures (1.2 nm in diameter), was studied in cluster and PBC approaches using B3LYP/6-31G* and PW PP LDA approximations. The total density of states (TDOS) of the smallest quasispherical silicon quantum dot (Si85) corresponds well to the TDOS of the bulk silicon. The elongated silicon nanodots and 1D nanowires demonstrate the metallic nature of the electronic structure. The surface oxidized layer opens the bandgap in the TDOS of the Si/SiO2 species. The top of the valence band and the bottom of conductivity band of the particles are formed by the silicon core derived states. The energy width of the bandgap is determined by the length of the Si/SiO2 clusters and demonstrates inverse dependence upon the size of the nanostructures. The theoretical data describes the size confinement effect in photoluminescence spectra of the silica embedded nanocrystalline silicon with high accuracy.Comment: 22 pages, 5 figures, 1 tabl

    Improvement in steel smelting by studying melt behavior

    Full text link
    Analysis shows that the disequilibrium of melts may be used to characterize metal quality and to optimize smelting technology. For the production of pipe steel by means of a superpowerful DSP-135 arc furnace, a ladle-furnace unit, a vacuum-treatment system, and a continuous-casting machine, the sources of melt disequilibrium are studied in relation to the properties of the final steel. That provides the basis for the development of parameters characterizing different stages of the process. The proposed improvements in smelting technology are shown to be very efficient. © 2013 Allerton Press, Inc

    Fractional quantum Hall effect without energy gap

    Full text link
    In the fractional quantum Hall effect regime we measure diagonal (ρxx\rho_{xx}) and Hall (ρxy\rho_{xy}) magnetoresistivity tensor components of two-dimensional electron system (2DES) in gated GaAs/Alx_{x}Ga1x_{1-x}As heterojunctions, together with capacitance between 2DES and the gate. We observe 1/3- and 2/3-fractional quantum Hall effect at rather low magnetic fields where corresponding fractional minima in the thermodynamical density of states have already disappeared manifesting complete suppression of the quasiparticle energy gaps.Comment: 4 pages, 4 figure

    Protein Evolution within a Structural Space

    Get PDF
    Understanding of the evolutionary origins of protein structures represents a key component of the understanding of molecular evolution as a whole. Here we seek to elucidate how the features of an underlying protein structural "space" might impact protein structural evolution. We approach this question using lattice polymers as a completely characterized model of this space. We develop a measure of structural comparison of lattice structures that is analgous to the one used to understand structural similarities between real proteins. We use this measure of structural relatedness to create a graph of lattice structures and compare this graph (in which nodes are lattice structures and edges are defined using structural similarity) to the graph obtained for real protein structures. We find that the graph obtained from all compact lattice structures exhibits a distribution of structural neighbors per node consistent with a random graph. We also find that subgraphs of 3500 nodes chosen either at random or according to physical constraints also represent random graphs. We develop a divergent evolution model based on the lattice space which produces graphs that, within certain parameter regimes, recapitulate the scale-free behavior observed in similar graphs of real protein structures.Comment: 27 pages, 7 figure
    corecore