58 research outputs found
Enhanced Precision in Rainfall Forecasting for Mumbai: Utilizing Physics Informed ConvLSTM2D Models for Finer Spatial and Temporal Resolution
Forecasting rainfall in tropical areas is challenging due to complex
atmospheric behaviour, elevated humidity levels, and the common presence of
convective rain events. In the Indian context, the difficulty is further
exacerbated because of the monsoon intra seasonal oscillations, which introduce
significant variability in rainfall patterns over short periods. Earlier
investigations into rainfall prediction leveraged numerical weather prediction
methods, along with statistical and deep learning approaches. This study
introduces deep learning spatial model aimed at enhancing rainfall prediction
accuracy on a finer scale. In this study, we hypothesize that integrating
physical understanding improves the precipitation prediction skill of deep
learning models with high precision for finer spatial scales, such as cities.
To test this hypothesis, we introduce a physics informed ConvLSTM2D model to
predict precipitation 6hr and 12hr ahead for Mumbai, India. We utilize ERA5
reanalysis data select predictor variables, across various geopotential levels.
The ConvLSTM2D model was trained on the target variable precipitation for 4
different grids representing different spatial grid locations of Mumbai. Thus,
the use of the ConvLSTM2D model for rainfall prediction, utilizing physics
informed data from specific grids with limited spatial information, reflects
current advancements in meteorological research that emphasize both efficiency
and localized precision.Comment: Submitted to Computer and Geosciences. arXiv admin note: substantial
text overlap with arXiv:2310.0931
First Direct Observation of Nanometer size Hydride Precipitations on Superconducting Niobium
Superconducting niobium serves as a key enabling material for superconducting
radio frequency (SRF) technology as well as quantum computing devices. At room
temperature, hydrogen commonly occupies tetragonal sites in the Nb lattice as
metal (M)-gas (H) phase. When the temperature is decreased, however, solid
solution of Nb-H starts to be precipitated. In this study, we show the first
identified topographical features associated with nanometer-size hydride phase
(Nb1-xHx) precipitates on metallic superconducting niobium using
cryogenic-atomic force microscopy (AFM). Further, high energy grazing incidence
X-ray diffraction reveals information regarding the structure and stoichiometry
that these precipitates exhibit. Finally, through time-of-flight secondary ion
mass spectroscopy (ToF-SIMS), we are able to locate atomic hydrogen sources
near the top surface. This systematic study further explains localized
degradation of RF superconductivity by the proximity effect due to hydrogen
clusters
Desalination by forward osmosis: Identifying performance limiting parameters through module-scale modeling
In this study, we analyze the effects of membrane properties, namely water permeability, solute permeability, and structural parameter, on the overall performance of an FO membrane module to extract water from simulated seawater (0.6 M NaCl). By considering the thermodynamic limit of operation, we demonstrate that the maximum achievable water recovery is practically independent of membrane properties, and higher maximum water recovery is achievable with counter-current compared to co-current mode. Analysis of the module-scale model indicates that reducing the support layer structural parameter offers substantial reductions in the membrane area required to achieve a specified water recovery. For example, a 25% reduction of the structural parameter of a state-of-the-art thin-film composite (TFC) membrane (from 400 to 300 μm) yields a sizable 20% reduction in membrane area. In contrast, quintupling the water permeability coefficient (from 2.0 to 10.0 L m−2 h−1 bar−1) of a modern TFC membrane generates only a modest 10% saving in membrane area. In addition, because of the permeability-selectivity trade-off that governs current polymeric membranes, doubling the water permeability coefficient would cause crippling ~7-fold increases in forward and reverse solute permeation. This quantitative study models the potential performance of a module-scale FO desalination process and firmly highlights the need to prioritize the reduction of support layer mass transport resistances over water permeability increases in membrane development
Systematic Improvements in Transmon Qubit Coherence Enabled by Niobium Surface Encapsulation
We present a novel transmon qubit fabrication technique that yields
systematic improvements in T coherence times. We fabricate devices using an
encapsulation strategy that involves passivating the surface of niobium and
thereby preventing the formation of its lossy surface oxide. By maintaining the
same superconducting metal and only varying the surface structure, this
comparative investigation examining different capping materials and film
substrates across different qubit foundries definitively demonstrates the
detrimental impact that niobium oxides have on the coherence times of
superconducting qubits, compared to native oxides of tantalum, aluminum or
titanium nitride. Our surface-encapsulated niobium qubit devices exhibit T
coherence times 2 to 5 times longer than baseline niobium qubit devices with
native niobium oxides. When capping niobium with tantalum, we obtain median
qubit lifetimes above 200 microseconds. Our comparative structural and chemical
analysis suggests that amorphous niobium suboxides may induce higher losses.
These results are in line with high-accuracy measurements of the niobium oxide
loss tangent obtained with ultra-high Q superconducting radiofrequency (SRF)
cavities. This new surface encapsulation strategy enables further reduction of
dielectric losses via passivation with ambient-stable materials, while
preserving fabrication and scalable manufacturability thanks to the
compatibility with silicon processes
Haploidentical vs. sibling, unrelated, or cord blood hematopoietic cell transplantation for acute lymphoblastic leukemia
The role of haploidentical hematopoietic cell transplantation (HCT) using posttransplant cyclophosphamide (PTCy) for acute lymphoblastic leukemia (ALL) is being defined. We performed a retrospective, multivariable analysis comparing outcomes of HCT approaches by donor for adults with ALL in remission. The primary objective was to compare overall survival (OS) among haploidentical HCTs using PTCy and HLA-matched sibling donor (MSD), 8/8 HLAmatched unrelated donor (MUD), 7 /8 HLA-MUD, or umbilical cord blood (UCB) HCT. Comparing haploidentical HCT to MSD HCT, we found that OS, leukemia-free survival (LFS), nonrelapse mortality (NRM), relapse, and acute graft-versus-host disease (aGVHD) were not different but chronic GVHD (cGVHD) was higher in MSD HCT. Compared with MUD HCT, OS, LFS, and relapse were not different, but MUD HCT had increased NRM (hazard ratio [HR], 1.42; P = .02), grade 3 to 4 aGVHD (HR, 1.59; P = .005), and cGVHD. Compared with 7/8 UD HCT, LFS and relapse were not different, but 7/8 UD HCT had worse OS (HR, 1.38; P = .01) and increased NRM (HR, 2.13; P <_ .001), grade 3 to 4 aGVHD (HR, 1.86; P = .003), and cGVHD (HR, 1.72; P <_ .001). Compared with UCB HCT, late OS, late LFS, relapse, and cGVHD were not different but UCB HCT had worse early OS (<_18 months; HR, 1.93; P < .001), worse early LFS (HR, 1.40; P = .007) and increased incidences of NRM (HR, 2.08; P < .001) and grade 3 to 4 aGVHD (HR, 1.97; P < .001). Haploidentical HCT using PTCy showed no difference in survival but less GVHD compared with traditional MSD and MUD HCT and is the preferred alternative donor HCT option for adults with ALL in complete remission
Risk Factors for Graft-versus-Host Disease in Haploidentical Hematopoietic Cell Transplantation Using Post-Transplant Cyclophosphamide
Post-transplant cyclophosphamide (PTCy) has significantly increased the successful use of haploidentical donors with a relatively low incidence of graft-versus-host disease (GVHD). Given its increasing use, we sought to determine risk factors for GVHD after haploidentical hematopoietic cell transplantation (haplo-HCT) using PTCy. Data from the Center for International Blood and Marrow Transplant Research on adult patients with acute myeloid leukemia, acute lymphoblastic leukemia, myelodysplastic syndrome, or chronic myeloid leukemia who underwent PTCy-based haplo-HCT (2013 to 2016) were analyzed and categorized into 4 groups based on myeloablative (MA) or reduced-intensity conditioning (RIC) and bone marrow (BM) or peripheral blood (PB) graft source. In total, 646 patients were identified (MA-BM = 79, MA-PB = 183, RIC-BM = 192, RIC-PB = 192). The incidence of grade 2 to 4 acute GVHD at 6 months was highest in MA-PB (44%), followed by RIC-PB (36%), MA-BM (36%), and RIC-BM (30%) (P = .002). The incidence of chronic GVHD at 1 year was 40%, 34%, 24%, and 20%, respectively (P < .001). In multivariable analysis, there was no impact of stem cell source or conditioning regimen on grade 2 to 4 acute GVHD; however, older donor age (30 to 49 versus <29 years) was significantly associated with higher rates of grade 2 to 4 acute GVHD (hazard ratio [HR], 1.53; 95% confidence interval [CI], 1.11 to 2.12; P = .01). In contrast, PB compared to BM as a stem cell source was a significant risk factor for the development of chronic GVHD (HR, 1.70; 95% CI, 1.11 to 2.62; P = .01) in the RIC setting. There were no differences in relapse or overall survival between groups. Donor age and graft source are risk factors for acute and chronic GVHD, respectively, after PTCy-based haplo-HCT. Our results indicate that in RIC haplo-HCT, the risk of chronic GVHD is higher with PB stem cells, without any difference in relapse or overall survival
Allogeneic Hematopoietic Cell Transplantation for Blastic Plasmacytoid Dendritic Cell Neoplasm: A CIBMTR Analysis
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare hematological malignancy with a poor prognosis and considered incurable with conventional chemotherapy. Small observational studies reported allogeneic hematopoietic cell transplantation (allo-HCT) offers durable remissions in patients with BPDCN. We report an analysis of patients with BPDCN who received an allo-HCT, using data reported to the Center for International Blood and Marrow Transplant Research (CIBMTR). We identified 164 patients with BPDCN from 78 centers who underwent allo-HCT between 2007 and 2018. The 5-year overall survival (OS), disease-free survival (DFS), relapse, and nonrelapse mortality (NRM) rates were 51.2% (95% confidence interval [CI], 42.5-59.8), 44.4% (95% CI, 36.2-52.8), 32.2% (95% CI, 24.7-40.3), and 23.3% (95% CI, 16.9-30.4), respectively. Disease relapse was the most common cause of death. On multivariate analyses, age of ≥60 years was predictive for inferior OS (hazard ratio [HR], 2.16; 95% CI, 1.35-3.46; P = .001), and higher NRM (HR, 2.19; 95% CI, 1.13-4.22; P = .02). Remission status at time of allo-HCT (CR2/primary induction failure/relapse vs CR1) was predictive of inferior OS (HR, 1.87; 95% CI, 1.14-3.06; P = .01) and DFS (HR, 1.75; 95% CI, 1.11-2.76; P = .02). Use of myeloablative conditioning with total body irradiation (MAC-TBI) was predictive of improved DFS and reduced relapse risk. Allo-HCT is effective in providing durable remissions and long-term survival in BPDCN. Younger age and allo-HCT in CR1 predicted for improved survival, whereas MAC-TBI predicted for less relapse and improved DFS. Novel strategies incorporating allo-HCT are needed to further improve outcomes
- …