214 research outputs found
Coherent manipulation of magnetization precession in ferromagnetic semiconductor (Ga,Mn)As with successive optical pumping
We report dynamic control of magnetization precession by light alone. A
ferromagnetic (Ga,Mn)As epilayer was used for experiments. Amplitude of
precession was modulated to a large extent by tuning the time interval between
two successive optical pump pulses which induced torques on magnetization
through a non-thermal process. Nonlinear effect in precession motion was also
discussed.Comment: 3 pages, 4 figures, Submitted to AP
Photo-induced precession of magnetization in ferromagnetic (Ga,Mn)As
Precession of magnetization induced by pulsed optical excitation is observed
in a ferromagnetic semiconductor (Ga,Mn)As by time-resolved magneto-optical
measurements. It appears as complicated oscillations of polarization plane of
linearly-polarized probe pulses, but is reproduced by gyromagnetic theory
incorporating an impulsive change in an effective magnetic field due to changes
in magnetic anisotropy. It is inferred from the shape of the impulse that the
changes in anisotropy result from non-equilibrium carrier population: cooling
of hot photo-carriers and subsequent annihilation of photo-carriers
Detection of spin voltaic effect in a p-n heterojunction
Model calculation and experimental data of
circularly-polarized-light-dependent photocurrent in a n-AlGaAs/p-InGaAs/p-GaAs
heterostructure are reported. It is found that, under the appropriate forward
bias condition, spin voltaic effect (SVE) can survive across the heterojunction
and give rise to detectable polarization-dependent photocurrent signals which
are greater than the signals due to the magnetic circular dichroism. Our
analysis suggests that SVE can be enhanced by optimization of layer thickness,
doping profile, and applied bias, making SVE favorable for the realization of a
semiconductor-based polarization detector, a spin-photodiode (spin-PD).Comment: 16 pages, 3figure
Effect of Ga irradiation on magnetic and magnetotransport properties in (Ga,Mn)As epilayers
We report on the magnetic and magnetotransport properties of ferromagnetic
semiconductor (Ga,Mn)As modified by Ga ion irradiation using focused ion
beam. A marked reduction in the conductivity and the Curie temperature is
induced after the irradiation. Furthermore, an enhanced negative
magnetoresistance (MR) and a change in the magnetization reversal process are
also demonstrated at 4 K. Raman scattering spectra indicate a decrease in the
concentration of hole carriers after the irradiation, and a possible origin of
the change in the magnetic properties is discussed
Current-induced magnetization reversal in a (Ga,Mn)As-based magnetic tunnel junction
We report current-induced magnetization reversal in a ferromagnetic
semiconductor-based magnetic tunnel junction (Ga,Mn)As/AlAs/(Ga,Mn)As prepared
by molecular beam epitaxy on a p-GaAs(001) substrate. A change in
magneto-resistance that is asymmetric with respect to the current direction is
found with the excitation current of 10^6 A/cm^2. Contributions of both
unpolarized and spin-polarized components are examined, and we conclude that
the partial magnetization reversal occurs in the (Ga,Mn)As layer of smaller
magnetization with the spin-polarized tunneling current of 10^5 A/cm^2.Comment: 13 pages, 3 figure
Ion Irradiation Control of Ferromagnetism in (Ga,Mn)As
We report on a promising approach to the artificial modification of
ferromagnetic properties in (Ga,Mn)As using a Ga focused ion beam (FIB)
technique. The ferromagnetic properties of (Ga,Mn)As such as magnetic
anisotropy and Curie temperature can be controlled using Ga ion
irradiation, originating from a change in hole concentration and the
corresponding systematic variation in exchange interaction between Mn spins.
This change in hole concentration is also verified using micro-Raman
spectroscopy. We envisage that this approach offers a means of modifying the
ferromagnetic properties of magnetic semiconductors on the micro- or nano-meter
scale.Comment: 4 pages, 4 figures, to appear in Jpn. J. Appl. Phys. (Part 2 Letters
Ultrahigh field electron cyclotron resonance absorption in InMnAs films
We have carried out an ultrahigh field cyclotron resonance study of -type
InMnAs films, with Mn composition ranging from 0 to 12%, grown
on GaAs by low temperature molecular beam epitaxy. We observe that the electron
cyclotron resonance peak shifts to lower field with increasing . A detailed
comparison of experimental results with calculations based on a modified
Pidgeon-Brown model allows us to estimate the {\em s-d} and {\em p-d} exchange
coupling constants, and , for this important III-V dilute
magnetic semiconductor system.Comment: 4 pages, 4 figure
- …