105 research outputs found

    Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC

    Get PDF
    This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6 × 6 × 6 m3 liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019–2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7 m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties.Funded by SCOAP3. SCOAP3 supports the goals of the International Year of Basic Sciences for Sustainable Development

    Strange quark contributions to nucleon electric and magnetic form factors from parity-violating electron scattering asymmetries in the backward angle g0 experiment

    Get PDF
    The G0 collaboration has measured parity-violating asymmetries in elastic electron-proton and quasi-elastic electron-deuteron scattering at Q^2 = 0.22, 0.63 GeV^2. These asymmetries are sensitive to strange quark contributions to electric and magnetic properties of the nucleon, as well as to the axial current of the nucleon. The measurements were made using the polarized beam at Jefferson Laboratory by detecting electrons scattered at ~110 degrees from liquid targets. Together with previous results from the G0 forward angle measurement, the form factors which characterize the strange electric, strange magnetic and axial contributions were found to be G^{s}_{E}(0.221 GeV^2)= -0.0142305 +/- 0.035562 +/- 0.0181952 +/-0.0176497 G^{s}_{M}(0.221 GeV^2)=0.0833777 +/- 0.18337 +/- 0.0854892 +/- 0.0780912 G^{e}_{A}(0.221 GeV^2)=-0.501236 +/- 0.317127 +/- 0.193005 +/- 0.0878386 G^{s}_{E}(0.628 GeV^2)=0.110227 +/-0.0488068 +/- 0.0296044 +/- 0.0236998 G^{s}_{M}(0.628 GeV^2)=-0.12354 +/- 0.10953 +/- 0.0614285 +/- 0.0316972 G^{e}_{A}(0.628 GeV^2)=-0.197329 +/- 0.425414 +/- 0.256755 +/- 0.0948741 with statistical, point-to-point systematic and global systematic uncertainties given respectively. These results indicate small (<10%) strange quark contributions to the charge and magnetic nucleon form factors at the measured momentum transfers and are also consistent with a signficant reduction in the magnitude of the effective axial form factor compared with that measured in neutrino scattering experiments, providing the first experimental information on the nucleon anapole moment

    NOvA Systematics

    Full text link

    Supernova neutrino detection in NOvA

    No full text
    Click on the DOI link to access the article (may not be free). WSU authors: Meyer, H.; Muether, M. and N. Solomey. The complete list includes: Acero, M.A.; Adamson, P.; Agam, G.; Aliaga, L.; Alion, T.; Allakhverdian, V.; Anfimov, N.; Antoshkin, A.; Arrieta-Diaz, E.; Asquith, L.; Aurisano, A.; Back, A.; Backhouse, C.; Baird, M.; Balashov, N.; Baldi, P.; Bambah, B.A.; Bashar, S.; Bays, K.; Bending, S.; Bernstein, R.; Bhatnagar, V.; Bhuyan, B.; Bian, J.; Blair, J.; Booth, A.C.; Bour, P.; Bowles, R.; Bromberg, C.; Buchanan, N.; Butkevich, A.; Bychkov, V.; Calvez, S.; Carroll, T.J.; Catano-Mur, E.; Childress, S.; Choudhary, B.C.; Coan, T.E.; Colo, M.; Corwin, L.; Cremonesi, L.; Davies, G.S.; Derwent, P.F.; Ding, P.; Djurcic, Z.; Dolce, M.; Doyle, D.; Dueñas Tonguino, D.; Dukes, E.C.; Dung, P.; Duyang, H.; Edayath, S.; Ehrlich, R.; Elkins, M.; Feldman, G.J.; Filip, P.; Flanagan, W.; Franc, J.; Frank, M.J.; Gallagher, H.R.; Gandrajula, R.; Gao, F.; Germani, S.; Giri, A.; Gomes, R.A.; Goodman, M.C.; Grichine, V.; Groh, M.; Group, R.; Guo, B.; Habig, A.; Hakl, F.; Hall, A.; Hartnell, J.; Hatcher, R.; Hatzikoutelis, A.; Heller, K.; Hewes, J.; Himmel, A.; Holin, A. Howard, B.; Huang, J.; Hylen, J.; Jediny, F.; Johnson, C.; Judah, M.; Kakorin, I.; Kalra, D.; Kaplan, D.M.; Keloth, R.; Klimov, O.; Koerner, L.W.; Kolupaeva, L.; Kotelnikov, S.; Kubu, M.; Kullenberg, Ch.; Kumar, A.; Kuruppu, C.D.; Kus, V.; Lackey, T.; Lang, K.; Li, L.; Lin, S.; Lister, A.; Lokajicek, M.; Luchuk, S.; Magill, S.; Mann, W.A.; Marshak, M.L.; Martinez-Casales, M.; Matveev, V.; Mayes, B.; Méndez, D.P.; Messier, M.D.; Meyer, H.; Miao, T.; Miller, W.H.; Mishra, S.R.; Mislivec, A.; Mohanta, R.; Moren, A.; Morozova, A.; Mualem, L.; Muether, M.; Mufson, S.; Mulder, K.; Murphy, R.; Musser, J.; Naples, D.; Nayak, N.; Nelson, J.K.; Nichol, R.; Nikseresht, G.; Niner, E.; Norman, A.; Norrick, A.; Nosek, T.; Olshevskiy, A.; Olson, T.; Paley, J.; Patterson, R.B.; Pawloski, G.; Petrova, O.; Petti, R.; Plunkett, R.K.; Psihas, F.; Rafique, A.; Raj, V.; Ramson, B.; Rebel, B.; Rojas, P.; Ryabov, V.; Samoylov, O.; Sanchez, M.C.; Sánchez Falero, S.; Seong, I.S.; Shanahan, P.; Sheshukov, A.; Singh, P.; Singh, V.; Smith, E.; Smolik, J.; Snopok, P.; Solomey, N.; Sousa, A.; Soustruznik, K.; Strait, M.; Suter, L.; Sutton, A.; Sweeney, C.; Talaga, R.L.; Tapia Oregui, B.; Tas, P.; Thayyullathil, R.B.; Thomas, J.; Tiras, E.; Torbunov, D.; Tripathi, J.; Tsaris, A.; Torun, Y.; Urheim, J.; Vahle, P.; Vallari, Z.; Vasel, J.; Vokac, P.; Vrba, T.; Wallbank, M.; Warburton, T.K.; Wetstein, M.; Whittington, D.; Wickremasinghe, D.A.; Wojcicki, S.G.; Wolcott, J.; Yallappa Dombara, A.; Yonehara, K.; Yu, S.; Yu, Y.; Zadorozhnyy, S.; Zalesak, J.; Zhang, Y.; Zwaska, R.; NOvA Collaboration.The NOvA long-baseline neutrino experiment uses a pair of large, segmented, liquid-scintillator calorimeters to study neutrino oscillations, using GeV-scale neutrinos from the Fermilab NuMI beam. These detectors are also sensitive to the flux of neutrinos which are emitted during a core-collapse supernova through inverse beta decay interactions on carbon at energies of O(10 MeV)\mathcal{O}(10~\text{MeV}). This signature provides a means to study the dominant mode of energy release for a core-collapse supernova occurring in our galaxy. We describe the data-driven software trigger system developed and employed by the NOvA experiment to identify and record neutrino data from nearby galactic supernovae. This technique has been used by NOvA to self-trigger on potential core-collapse supernovae in our galaxy, with an estimated sensitivity reaching out to 10~kpc distance while achieving a detection efficiency of 23\% to 49\% for supernovae from progenitor stars with masses of 9.6M_\odot to 27M_\odot, respectively.NOvA collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. This work was supported by the U.S. Department of Energy; the U.S. National Science Foundation; the Department of Science and Technology, India; the European Research Council; the MSMT CR, GA U.K., Czech Republic; the RAS, RFBR, RMES, RSF, and BASIS Foundation, Russia; CNPq and FAPEG, Brazil; STFC, and the Royal Society, United Kingdom; and the state and University of Minnesota. We are grateful for the contributions of the staffs of the University of Minnesota at the Ash River Laboratory and of Fermilab

    First measurement of electron neutrino appearance in NOvA

    No full text
    Click on the DOI link to access the article (may not be free). WSU authors: Meyer, H.; Muether, M. and N. Solomey. The complete list includes over 200 authors: Adamson, P.; Ader, C.; Andrews, M.; Anfimov, N.; Anghel, I.; Arms, K.; Arrieta-Diaz, E.; Aurisano, A.; Ayres, D. S.; Backhouse, C.; Baird, M.; Bambah, B. A.; Bays, K.; Bernstein, R.; Betancourt, M.; Bhatnagar, V.; Bhuyan, B.; Bian, J.; Biery, K.; Blackburn, T.; Bocean, V.; Bogert, D.; Bolshakova, A.; Bowden, M.; Bower, C.; Broemmelsiek, D.; Bromberg, C.; Brunetti, G.; Bu, X.; Butkevich, A.; Capista, D.; Catano-Mur, E.; Chase, T. R.; Childress, S.; Choudhary, B. C.; Chowdhury, B.; Coan, T. E.; Coelho, J. A. B.; Colo, M.; Cooper, J.; Corwin, L.; Cronin-Hennessy, D.; Cunningham, A.; Davies, G. S.; Davies, J. P.; Del Tutto, M.; Derwent, P. F.; Deepthi, K. N.; Demuth, D.; Desai, S.; Deuerling, G.; Devan, A.; Dey, J.; Dharmapalan, R.; Ding, P.; Dixon, S.; Djurcic, Z.; Dukes, E. C.; Duyang, H.; Ehrlich, R.; Feldman, G. J.; Felt, N.; Fenyves, E. J.; Flumerfelt, E.; Foulkes, S.; Frank, M. J.; Freeman, W.; Gabrielyan, M.; Gallagher, H. R.; Gebhard, M.; Ghosh, T.; Gilbert, W.; Giri, A.; Goadhouse, S.; Gomes, R. A.; Goodenough, L.; Goodman, M. C.; Grichine, V.; Grossman, N.; Group, R.; Grudzinski, J.; Guarino, V.; Guo, B.; Habig, A.; Handler, T.; Hartnell, J.; Hatcher, R.; Hatzikoutelis, A.; Heller, K.; Howcroft, C.; Huang, J.; Huang, X.; Hylen, J.; Ishitsuka, M.; Jediny, F.; Jensen, C.; Jensen, D.; Johnson, C.; Jostlein, H.; Kafka, G. K.; Kamyshkov, Y.; Kasahara, S. M. S.; Kasetti, S.; Kephart, K.; Koizumi, G.; Kotelnikov, S.; Kourbanis, I.; Krahn, Z.; Kravtsov, V.; Kreymer, A.; Kulenberg, Ch.; Kumar, A.; Kutnink, T.; Kwarciancy, R.; Kwong, J.; Lang, K.; Lee, A.; Lee, W. M.; Lee, K.; Lein, S.; Liu, J.; Lokajicek, M.; Lozier, J.; Lu, Q.; Lucas, P.; Luchuk, S.; Lukens, P.; Lukhanin, G.; Magill, S.; Maan, K.; Mann, W. A.; Marshak, M. L.; Martens, M.; Martincik, J.; Mason, P.; Matera, K.; Mathis, M.; Matveev, V.; Mayer, N.; McCluskey, E.; Mehdiyev, R.; Merritt, H.; Messier, M. D.; Meyer, H.; Miao, T.; Michael, D.; Mikheyev, S. P.; Miller, W. H.; Mishra, S. R.; Mohanta, R.; Moren, A.; Mualem, L.; Muether, M.; Mufson, S.; Musser, J.; Newman, H. B.; Nelson, J. K.; Niner, E.; Norman, A.; Nowak, J.; Oksuzian, Y.; Olshevskiy, A.; Oliver, J.; Olson, T.; Paley, J.; Pandey, P.; Para, A.; Patterson, R. B.; Pawloski, G.; Pearson, N.; Perevalov, D.; Pershey, D.; Peterson, E.; Petti, R.; Phan-Budd, S.; Piccoli, L.; Pla-Dalmau, A.; Plunkett, R. K.; Poling, R.; Potukuchi, B.; Psihas, F.; Pushka, D.; Qiu, X.; Raddatz, N.; Radovic, A.; Rameika, R. A.; Ray, R.; Rebel, B.; Rechenmacher, R.; Reed, B.; Reilly, R.; Rocco, D.; Rodkin, D.; Ruddick, K.; Rusack, R.; Ryabov, V.; Sachdev, K.; Sahijpal, S.; Sahoo, H.; Samoylov, O.; Sanchez, M. C.; Saoulidou, N.; Schlabach, P.; Schneps, J.; Schroeter, R.; Sepulveda-Quiroz, J.; Shanahan, P.; Sherwood, B.; Sheshukov, A.; Singh, J.; Singh, V.; Smith, A.; Smith, D.; Smolik, J.; Solomey, N.; Sotnikov, A.; Sousa, A.; Soustruznik, K.; Stenkin, Y.; Strait, M.; Suter, L.; Talaga, R. L.; Tamsett, M. C.; Tariq, S.; Tas, P.; Tesarek, R. J.; Thayyullathil, R. B.; Thomsen, K.; Tian, X.; Tognini, S. C.; Toner, R.; Trevor, J.; Tzanakos, G.; Urheim, J.; Vahle, P.; Valerio, L.; Vinton, L.; Vrba, T.; Waldron, A. V.; Wang, B.; Wang, Z.; Weber, A.; Wehmann, A.; Whittington, D.; Wilcer, N.; Wildberger, R.; Wildman, D.; Williams, K.; Wojcicki, S. G.; Wood, K.; Xiao, M.; Xin, T.; Yadav, N.; Yang, S.; Zadorozhnyy, S.; Zalesak, J.; Zamorano, B.; Zhao, A.; Zirnstein, J.; Zwaska, R.We report results from the first search for νμνe\nu_\mu\to\nu_e transitions by the NOvA experiment. In an exposure equivalent to 2.74×10202.74\times10^{20} protons-on-target in the upgraded NuMI beam at Fermilab, we observe 6 events in the Far Detector, compared to a background expectation of 0.99±0.110.99\pm0.11 (syst.) events based on the Near Detector measurement. A secondary analysis observes 11 events with a background of 1.07±0.141.07\pm0.14 (syst.). The 3.3σ3.3\sigma excess of events observed in the primary analysis disfavors 0.1π<δCP<0.5π0.1\pi < \delta_{CP} < 0.5\pi in the inverted mass hierarchy at the 90% C.L.U.S. Department of Energy; the U.S. National Science Foundation; the Department of Science and Technology, India; the European Research Council; the MSMT CR, Czech Republic; the RAS, RMES, and RFBR, Russia; CNPq and FAPEG, Brazil; and the State and University of Minnesota. We are grateful for the contributions of the staffs at the University of Minnesota module assembly facility and Ash River Laboratory, at the Argonne National Laboratory, and at Fermilab. Fermilab is operated by Fermi Research Alliance, LLC, under Contract No. De-AC02-07CH11359 with the U.S. DOE

    Measurement of neutrino-induced neutral-current coherent π0π^0 production in the NOvA near detector

    No full text
    © 2020 authors. Open access. Published by the American Physical Society under the terms of the "https://creativecommons.org/licenses/by/4.0/"Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP3.. WSU authors: Meyer, Holger; Muether, Mathew; Solomey, Nickolas. The complete list includes: Acero, M.A.; Adamson, P.; Aliaga, L.; Alion, T.; Allakhverdian, V.; Anfimov, N.; Antoshkin, A.; Arrieta-Diaz, E.; Aurisano, A.; Back, A.; Backhouse, C.; Baird, M.; Balashov, N.; Baldi, P.; Bambah, B.A.; Basher, S.; Bays, K.; Behera, B.; Bending, S.; Bernstein, R.; Bhatnagar, V.; Bhuyan, B.; Bian, J.; Blair, J.; Booth, A.C.; Bolshakova, A.; Bour, P.; Bromberg, C.; Buchanan, N.; Butkevich, A.; Campbell, M.; Carroll, T.J.; Catano-Mur, E.; Childress, S.; Choudhary, B.C.; Chowdhury, B.; Coan, T.E.; Colo, M.; Corwin, L.; Cremonesi, L.; Cronin-Hennessy, D.; Davies, G.S.; Derwent, P.F.; Ding, P.; Djurcic, Z.; Doyle, D.; Dukes, E.C.; Dung, P.; Duyang, H.; Edayath, S.; Ehrlich, R.; Feldman, G.J.; Flanagan, W.; Frank, M.J.; Gallagher, H.R.; Gandrajula, R.; Gao, F.; Germani, S.; Giri, A.; Gomes, R.A.; Goodman, M.C.; Grichine, V.; Groh, M.; Group, R.; Guo, B.; Habig, A.; Hakl, F.; Hartnell, J.; Hatcher, R.; Hatzikoutelis, A.; Heller, K.; Himmel, A.; Holin, A.; Howard, B.; Huang, J.; Hylen, J.; Jediny, F.; Johnson, C.; Judah, M.; Kakorin, I.; Kalra, D.; Kaplan, D.M.; Keloth, R.; Klimov, O.; Koerner, L.W.; Kolupaeva, L.; Kotelnikov, S.; Kreymer, A.; Kullenberg, C.; Kumar, A.; Kuruppu, C.D.; Kus, V.; Lackey, T.; Lang, K.; Lin, S.; Lokajicek, M.; Lozier, J.; Luchuk, S.; Maan, K.; Magill, S.; Mann, W.A.; Marshak, M.L.; Matveev, V.; Méndez, D.P.; Messier, M.D.; Meyer, H.; Miao, T.; Miller, W.H.; Mishra, S.R.; Mislivec, A.; Mohanta, R.; Moren, A.; Mualem, L.; Muether, M.; Mulder, K.; Mufson, S.; Murphy, R.; Musser, J.; Naples, D.; Nayak, N.; Nelson, J.K.; Nichol, R.; Niner, E.; Norman, A.; Nosek, T.; Oksuzian, Y.; Olshevskiy, A.; Olson, T.; Paley, J.; Patterson, R.B.; Pawloski, G.; Pershey, D.; Petrova, O.; Petti, R.; Plunkett, R.K.; Potukuchi, B.; Principato, C.; Psihas, F.; Raj, V.; Radovic, A.; Rameika, R.A.; Rebel, B.; Rojas, P.; Ryabov, V.; Sachdev, K.; Samoylov, O.; Sanchez, M.C.; Seong, I.S.; Shanahan, P.; Sheshukov, A.; Singh, P.; Singh, V.; Smith, E.; Smolik, J.; Snopok, P.; Solomey, N.; Song, E.; Sousa, A.; Soustruznik, K.; Strait, M.; Suter, L.; Talaga, R.L.; Tas, P.; Thayyullathil, R.B.; Thomas, J.; Tiras, E.; Torbunov, D.; Tripathi, J.; Tsaris, A.; Torun, Y.; Urheim, J.; Vahle, P.; Vasel, J.; Vinton, L.; Vokac, P.; Vrba, T.; Wang, B.; Warburton, T.K.; Wetstein, M.; While, M.; Whittington, D.; Wojcicki, S.G.; Wolcott, J.; Yadav, N.; Yallappa Dombara, A.; Yang, S.; Yonehara, K.; Yu, S.; Zalesak, J.; Zamorano, B.; Zwaska, R.l; NOvA Collaboration.The cross section of neutrino-induced neutral-current coherent π0\pi^0 production on a carbon-dominated target is measured in the NOvA near detector. This measurement uses a narrow-band neutrino beam with an average neutrino energy of 2.7\,GeV, which is of interest to ongoing and future long-baseline neutrino oscillation experiments. The measured flux-averaged cross section is σ=13.8±0.9(stat)±2.3(syst)×1040cm2/nucleus\sigma = 13.8\pm0.9 (\text{stat})\pm2.3 (\text{syst}) \times 10^{-40}\,\text{cm}^2/\text{nucleus} , consistent with model prediction. This result is the most precise measurement of neutral-current coherent π0\pi^0 production in the few-GeV neutrino energy region.Document was prepared by the NOvA Collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP user facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. This work was supported by the U.S. Department of Energy; the U.S. National Science Foundation; the Department of Science and Technology, India; the European Research Council; the MSMT CR, GA UK, Czech Republic; the RAS, RFBR, RMES, RSF, and BASIS Foundation, Russia; CNPq and FAPEG, Brazil; STFC and the Royal Society, United Kingdom; and the state and University of Minnesota

    Long-baseline neutrino oscillation physics potential of the DUNE experiment: DUNE Collaboration

    No full text
    © 2020, The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. WSU authors: Meyer, H.; Muether, M.; Solomey, N. The complete list includes: Abi, B.; Acciarri, R.; Acero, M.A.; Adamov, G.; Adams, D.; Adinolfi, M.; Ahmad, Z.; Ahmed, J.; Alion, T.; Monsalve, S.A.; Alt, C.; Anderson, J.; Andreopoulos, C.; Andrews, M.P.; Andrianala, F.; Andringa, S.; Ankowski, A.; Antonova, M.; Antusch, S.; Aranda-Fernandez, A.; Ariga, A.; Arnold, L.O.; Arroyave, M.A.; Asaadi, J.; Aurisano, A.; Aushev, V.; Autiero, D.; Azfar, F.; Back, H.; Back, J.J.; Backhouse, C.; Baesso, P.; Bagby, L.; Bajou, R.; Balasubramanian, S.; Baldi, P.; Bambah, B.; Barao, F.; Barenboim, G.; Barker, G.J.; Barkhouse, W.; Barnes, C.; Barr, G.; Monarca, J.B.; Barros, N.; Barrow, J.L.; Bashyal, A.; Basque, V.; Bay, F.; Alba, J.L.B.; Beacom, J.F.; Bechetoille, E.; Behera, B.; Bellantoni, L.; Bellettini, G.; Bellini, V.; Beltramello, O.; Belver, D.; Benekos, N.; Neves, F.B.; Berger, J.; Berkman, S.; Bernardini, P.; Berner, R.M.; Berns, H.; Bertolucci, S.; Betancourt, M.; Bezawada, Y.; Bhattacharjee, M.; Bhuyan, B.; Biagi, S.; Bian, J.; Biassoni, M.; Biery, K.; Bilki, B.; Bishai, M.; Bitadze, A.; Blake, A.; Siffert, B.B.; Blaszczyk, F.D.M.; Blazey, G.C.; Blucher, E.; Boissevain, J.; Bolognesi, S.; Bolton, T.; Bonesini, M.; Bongrand, M.; Bonini, F.; Booth, A.; Booth, C.; Bordoni, S.; Borkum, A.; Boschi, T.; Bostan, N.; Bour, P.; Boyd, S.B.; Boyden, D.; Bracinik, J.; Braga, D.; Brailsford, D.; Brandt, A.; Bremer, J.; Brew, C.; Brianne, E.; Brice, S.J.; Brizzolari, C.; Bromberg, C.; Brooijmans, G.; Brooke, J.; Bross, A.; Brunetti, G.; Buchanan, N.; Budd, H.; Caiulo, D.; Calafiura, P.; Calcutt, J.; Calin, M.; Calvez, S.; Calvo, E.; Camilleri, L.; Caminata, A.; Campanelli, M.; Caratelli, D.; Carini, G.; Carlus, B.; Carniti, P.; Terrazas, I.C.; Carranza, H.; Castillo, A.; Castromonte, C.; Cattadori, C.; Cavalier, F.; Cavanna, F.; Centro, S.; Cerati, G.; Cervelli, A.; Villanueva, A.C.; Chalifour, M.; Chang, C.; Chardonnet, E.; Chatterjee, A.; Chattopadhyay, S.; Chaves, J.; Chen, H.; Chen, M.; Chen, Y.; Cherdack, D.; Chi, C.; Childress, S.; Chiriacescu, A.; Cho, K.; Choubey, S.; Christensen, A.; Christian, D.; Christodoulou, G.; Church, E.; Clarke, P.; Coan, T.E.; Cocco, A.G.; Coelho, J.A.B.; Conley, E.; Conrad, J.M.; Convery, M.; Corwin, L.; Cotte, P.; Cremaldi, L.; Cremonesi, L.; Crespo-Anadón, J.I.; Cristaldo, E.; Cross, R.; Cuesta, C.; Cui, Y.; Cussans, D.; Dabrowski, M.; Motta, H.; Da Silva Peres, L.; David, C.; David, Q.; Davies, G.S.; Davini, S.; Dawson, J.; De, K.; De Almeida, R.M.; Debbins, P.; De Bonis, I.; Decowski, M.P.; de Gouvêa, A.; De Holanda, P.C.; De Icaza Astiz, I.L.; Deisting, A.; De Jong, P.; Delbart, A.; Delepine, D.; Delgado, M.; Dell’Acqua, A.; De Lurgio, P.; de Mello Neto, J.R.T.; DeMuth, D.M.; Dennis, S.; Densham, C.; Deptuch, G.; De Roeck, A.; De Romeri, V.; De Vries, J.J.; Dharmapalan, R.; Dias, M.; Diaz, F.; Díaz, J.S.; Domizio, S.D.; Giulio, L.D.; Ding, P.; Noto, L.D.; Distefano, C.; Diurba, R.; Diwan, M.; Djurcic, Z.; Dokania, N.; Dolinski, M.J.; Domine, L.; Douglas, D.; Drielsma, F.; Duchesneau, D.; Duffy, K.; Dunne, P.; Durkin, T.; Duyang, H.; Dvornikov, O.; Dwyer, D.A.; Dyshkant, A.S.; Eads, M.; Edmunds, D.; Eisch, J.; Emery, S.; Ereditato, A.; Escobar, C.O.; Sanchez, L.E.; Evans, J.J.; Ewart, E.; Ezeribe, A.C.; Fahey, K.; Falcone, A.; Farnese, C.; Farzan, Y.; Felix, J.; Fernandez-Martinez, E.; Menendez, P.F.; Ferraro, F.; Fields, L.; Filkins, A.; Filthaut, F.; Fitzpatrick, R.S.; Flanagan, W.; Fleming, B.; Flight, R.; Fowler, J.; Fox, W.; Franc, J.; Francis, K.; Franco, D.; Freeman, J.; Freestone, J.; Fried, J.; Friedland, A.; Fuess, S.; Furic, I.; Furmanski, A.P.; Gago, A.; Gallagher, H.; Gallego-Ros, A.; Gallice, N.; Galymov, V.; Gamberini, E.; Gamble, T.; Gandhi, R.; Gandrajula, R.; Gao, S.; Garcia-Gamez, D.; García-Peris, M.Á.; Gardiner, S.; Gastler, D.; Ge, G.; Gelli, B.; Gendotti, A.; Gent, S.; Ghorbani-Moghaddam, Z.; Gibin, D.; Gil-Botella, I.; Girerd, C.; Giri, A.K.; Gnani, D.; Gogota, O.; Gold, M.; Gollapinni, S.; Gollwitzer, K.; Gomes, R.A.; Bermeo, L.V.G.; Fajardo, L.S.G.; Gonnella, F.; Gonzalez-Cuevas, J.A.; Goodman, M.C.; Goodwin, O.; Goswami, S.; Gotti, C.; Goudzovski, E.; Grace, C.; Graham, M.; Gramellini, E.; Gran, R.; Granados, E.; Grant, A.; Grant, C.; Gratieri, D.; Green, P.; Green, S.; Greenler, L.; Greenwood, M.; Greer, J.; Griffith, W.C.; Groh, M.; Grudzinski, J.; Grzelak, K.; Gu, W.; Guarino, V.; Guenette, R.; Guglielmi, A.; Guo, B.; Guthikonda, K.K.; Gutierrez, R.; Guzowski, P.; Guzzo, M.M.; Gwon, S.; Habig, A.; Hackenburg, A.; Hadavand, H.; Haenni, R.; Hahn, A.; Haigh, J.; Haiston, J.; Hamernik, T.; Hamilton, P.; Han, J.; Harder, K.; Harris, D.A.; Hartnell, J.; Hasegawa, T.; Hatcher, R.; Hazen, E.; Heavey, A.; Heeger, K.M.; Heise, J.; Hennessy, K.; Henry, S.; Morquecho, M.A.H.; Herner, K.; Hertel, L.; Hesam, A.S.; Hewes, J.; Higuera, A.; Hill, T.; Hillier, S.J.; Himmel, A.; Hoff, J.; Hohl, C.; Holin, A.; Hoppe, E.; Horton-Smith, G.A.; Hostert, M.; Hourlier, A.; Howard, B.; Howell, R.; Huang, J.; Huang, J.; Hugon, J.; Iles, G.; Ilic, N.; Iliescu, A.M.; Illingworth, R.; Ioannisian, A.; Itay, R.; Izmaylov, A.; James, E.; Jargowsky, B.; Jediny, F.; Jesùs-Valls, C.; Ji, X.; Jiang, L.; Jiménez, S.; Jipa, A.; Joglekar, A.; Johnson, C.; Johnson, R.; Jones, B.; Jones, S.; Jung, C.K.; Junk, T.; Jwa, Y.; Kabirnezhad, M.; Kaboth, A.; Kadenko, I.; Kamiya, F.; Karagiorgi, G.; Karcher, A.; Karolak, M.; Karyotakis, Y.; Kasai, S.; Kasetti, S.P.; Kashur, L.; Kazaryan, N.; Kearns, E.; Keener, P.; Kelly, K.J.; Kemp, E.; Ketchum, W.; Kettell, S.H.; Khabibullin, M.; Khotjantsev, A.; Khvedelidze, A.; Kim, D.; King, B.; Kirby, B.; Kirby, M.; Klein, J.; Koehler, K.; Koerner, L.W.; Kohn, S.; Koller, P.P.; Kordosky, M.; Kosc, T.; Kose, U.; Kostelecký, V.A.; Kothekar, K.; Krennrich, F.; Kreslo, I.; Kudenko, Y.; Kudryavtsev, V.A.; Kulagin, S.; Kumar, J.; Kumar, R.; Kuruppu, C.; Kus, V.; Kutter, T.; Lambert, A.; Lande, K.; Lane, C.E.; Lang, K.; Langford, T.; Lasorak, P.; Last, D.; Lastoria, C.; Laundrie, A.; Lawrence, A.; Lazanu, I.; LaZur, R.; Le, T.; Learned, J.; LeBrun, P.; Miotto, G.L.; Lehnert, R.; de Oliveira, M.A.L.; Leitner, M.; Leyton, M.; Li, L.; Li, S.; Li, S.W.; Li, T.; Li, Y.; Liao, H.; Lin, C.S.; Lin, S.; Lister, A.; Littlejohn, B.R.; Liu, J.; Lockwitz, S.; Loew, T.; Lokajicek, M.; Lomidze, I.; Long, K.; Loo, K.; Lorca, D.; Lord, T.; LoSecco, J.M.; Louis, W.C.; Luk, K.B.; Luo, X.; Lurkin, N.; Lux, T.; Luzio, V.P.; MacFarland, D.; Machado, A.A.; Machado, P.; Macias, C.T.; Macier, J.R.; Maddalena, A.; Madigan, P.; Magill, S.; Mahn, K.; Maio, A.; Maloney, J.A.; Mandrioli, G.; Maneira, J.; Manenti, L.; Manly, S.; Mann, A.; Manolopoulos, K.; Plata, M.M.; Marchionni, A.; Marciano, W.; Marfatia, D.; Mariani, C.; Maricic, J.; Marinho, F.; Marino, A.D.; Marshak, M.; Marshall, C.; Marshall, J.; Marteau, J.; Martin-Albo, J.; Martinez, N.; Caicedo, D.A.M.; Martynenko, S.; Mason, K.; Mastbaum, A.; Masud, M.; Matsuno, S.; Matthews, J.; Mauger, C.; Mauri, N.; Mavrokoridis, K.; Mazza, R.; Mazzacane, A.; Mazzucato, E.; McCluskey, E.; McConkey, N.; McFarland, K.S.; McGrew, C.; McNab, A.; Mefodiev, A.; Mehta, P.; Melas, P.; Mellinato, M.; Mena, O.; Menary, S.; Mendez, H.; Menegolli, A.; Meng, G.; Messier, M.D.; Metcalf, W.; Mewes, M.; Meyer, H.; Miao, T.; Michna, G.; Miedema, T.; Migenda, J.; Milincic, R.; Miller, W.; Mills, J.; Milne, C.; Mineev, O.; Miranda, O.G.; Miryala, S.; Mishra, C.S.; Mishra, S.R.; Mislivec, A.; Mladenov, D.; Mocioiu, I.; Moffat, K.; Moggi, N.; Mohanta, R.; Mohayai, T.A.; Mokhov, N.; Molina, J.; Bueno, L.M.; Montanari, A.; Montanari, C.; Montanari, D.; Zetina, L.M.M.; Moon, J.; Mooney, M.; Moor, A.; Moreno, D.; Morgan, B.; Morris, C.; Mossey, C.; Motuk, E.; Moura, C.A.; Mousseau, J.; Mu, W.; Mualem, L.; Mueller, J.; Muether, M.; Mufson, S.; Muheim, F.; Muir, A.; Mulhearn, M.; Muramatsu, H.; Murphy, S.; Musser, J.; Nachtman, J.; Nagu, S.; Nalbandyan, M.; Nandakumar, R.; Naples, D.; Narita, S.; Navas-Nicolás, D.; Nayak, N.; Nebot-Guinot, M.; Necib, L.; Negishi, K.; Nelson, J.K.; Nesbit, J.; Nessi, M.; Newbold, D.; Newcomer, M.; Newhart, D.; Nichol, R.; Niner, E.; Nishimura, K.; Norman, A.; Norrick, A.; Northrop, R.; Novella, P.; Nowak, J.A.; Oberling, M.; Campo, A.O.D.; Olivier, A.; Onel, Y.; Onishchuk, Y.; Ott, J.; Pagani, L.; Pakvasa, S.; Palamara, O.; Palestini, S.; Paley, J.M.; Pallavicini, M.; Palomares, C.; Pantic, E.; Paolone, V.; Papadimitriou, V.; Papaleo, R.; Papanestis, A.; Paramesvaran, S.; Parke, S.; Parsa, Z.; Parvu, M.; Pascoli, S.; Pasqualini, L.; Pasternak, J.; Pater, J.; Patrick, C.; Patrizii, L.; Patterson, R.B.; Patton, S.J.; Patzak, T.; Paudel, A.; Paulos, B.; Paulucci, L.; Pavlovic, Z.; Pawloski, G.; Payne, D.; Pec, V.; Peeters, S.J.M.; Penichot, Y.; Pennacchio, E.; Penzo, A.; Peres, O.L.G.; Perry, J.; Pershey, D.; Pessina, G.; Petrillo, G.; Petta, C.; Petti, R.; Piastra, F.; Pickering, L.; Pietropaolo, F.; Pillow, J.; Pinzino, J.; Plunkett, R.; Poling, R.; Pons, X.; • Poonthottathil, N.; Pordes, S.; Potekhin, M.; Potenza, R.; Potukuchi, B.V.K.S.; Pozimski, J.; Pozzato, M.; Prakash, S.; Prakash, T.; Prince, S.; Prior, G.; Pugnere, D.; Qi, K.; Qian, X.; Raaf, J.L.; Raboanary, R.; Radeka, V.; Rademacker, J.; Radics, B.; Rafique, A.; Raguzin, E.; Rai, M.; Rajaoalisoa, M.; Rakhno, I.; Rakotondramanana, H.T.; Rakotondravohitra, L.; Ramachers, Y.A.; Rameika, R.; Delgado, M.A.R.; Ramson, B.; Rappoldi, A.; Raselli, G.; Ratoff, P.; Ravat, S.; Razafinime, H.; Real, J.S.; Rebel, B.; Redondo, D.; Reggiani-Guzzo, M.; Rehak, T.; Reichenbacher, J.; Reitzner, S.D.; Renshaw, A.; Rescia, S.; Resnati, F.; Reynolds, A.; Riccobene, G.; Rice, L.C.J.; Rielage, K.; Rigaut, Y.; Rivera, D.; Rochester, L.; Roda, M.; Rodrigues, P.; Alonso, M.J.R.; Rondon, J.R.; Roeth, A.J.; Rogers, H.; Rosauro-Alcaraz, S.; Rossella, M.; Rout, J.; Roy, S.; Rubbia, A.; Rubbia, C.; Russell, B.; Russell, J.; Ruterbories, D.; Saakyan, R.; Sacerdoti, S.; Safford, T.; Sahu, N.; Sala, P.; Samios, N.; Sanchez, M.C.; Sanders, D.A.; Sankey, D.; Santana, S.; Santos-Maldonado, M.; Saoulidou, N.; Sapienza, P.; Sarasty, C.; Sarcevic, I.; Savage, G.; Savinov, V.; Scaramelli, A.; Scarff, A.; Scarpelli, A.; Schaffer, T.; Schellman, H.; Schlabach, P.; Schmitz, D.; Scholberg, K.; Schukraft, A.; Segreto, E.; Sensenig, J.; Seong, I.; Sergi, A.; Sergiampietri, F.; Sgalaberna, D.; Shaevitz, M.H.; Shafaq, S.; Shamma, M.; Sharma, H.R.; Sharma, R.; Shaw, T.; Shepherd-Themistocleous, C.; Shin, S.; Shooltz, D.; Shrock, R.; Simard, L.; Simos, N.; Sinclair, J.; Sinev, G.; Singh, J.; Singh, J.; Singh, V.; Sipos, R.; Sippach, F.W.; Sirri, G.; Sitraka, A.; Siyeon, K.; Smargianaki, D.; Smith, A.; Smith, A.; Smith, E.; Smith, P.; Smolik, J.; Smy, M.; Snopok, P.; Nunes, M.S.; Sobel, H.; Soderberg, M.; Salinas, C.J.S.; Söldner-Rembold, S.; Solomey, N.; Solovov, V.; Sondheim, W.E.; Sorel, M.; Soto-Oton, J.; Sousa, A.; Soustruznik, K.; Spagliardi, F.; Spanu, M.; Spitz, J.; Spooner, N.J.C.; Spurgeon, K.; Staley, R.; Stancari, M.; Stanco, L.; Steiner, H.M.; Stewart, J.; Stillwell, B.; Stock, J.; Stocker, F.; Stokes, T.; Strait, M.; Strauss, T.; Striganov, S.; Stuart, A.; Summers, D.; Surdo, A.; Susic, V.; Suter, L.; Sutera, C.M.; Svoboda, R.; Szczerbinska, B.; Szelc, A.M.; Talaga, R.; Tanaka, H.A.; Oregui, B.T.; Tapper, A.; Tariq, S.; Tatar, E.; Tayloe, R.; Teklu, A.M.; Tenti, M.; Terao, K.; Ternes, C.A.; Terranova, F.; Testera, G.; Thea, A.; Thompson, J.L.; Thorn, C.; Timm, S.C.; Tonazzo, A.; Torti, M.; Tortola, M.; Tortorici, F.; Totani, D.; Toups, M.; Touramanis, C.; Trevor, J.; Trzaska, W.H.; Tsai, Y.T.; Tsamalaidze, Z.; Tsang, K.V.; Tsverava, N.; Tufanli, S.; Tull, C.; Tyley, E.; Tzanov, M.; Uchida, M.A.; Urheim, J.; Usher, T.; Vagins, M.R.; Vahle, P.; Valdiviesso, G.A.; Valencia, E.; Vallari, Z.; Valle, J.W.F.; Vallecorsa, S.; Van Berg, R.; Van de Water, R.G.; Forero, D.V.; Varanini, F.; Vargas, D.; Varner, G.; Vasel, J.; Vasseur, G.; Vaziri, K.; Ventura, S.; Verdugo, A.; Vergani, S.; Vermeulen, M.A.; Verzocchi, M.; de Souza, H.V.; Vignoli, C.; Vilela, C.; Viren, B.; Vrba, T.; Wachala, T.; Waldron, A.V.; Wallbank, M.; Wang, H.; Wang, J.; Wang, Y.; Wang, Y.; Warburton, K.; Warner, D.; Wascko, M.; Waters, D.; Watson, A.; Weatherly, P.; Weber, A.; Weber, M.; Wei, H.; Weinstein, A.; Wenman, D.; Wetstein, M.; While, M.R.; White, A.; Whitehead, L.H.; Whittington, D.; Wilking, M.J.; Wilkinson, C.; Williams, Z.; Wilson, F.; Wilson, R.J.; Wolcott, J.; Wongjirad, T.; Wood, K.; Wood, L.; Worcester, E.; Worcester, M.; Wret, C.; Wu, W.; Wu, W.; Xiao, Y.; Yang, G.; Yang, T.; Yershov, N.; Yonehara, K.; Young, T.; Yu, B.; Yu, J.; Zaki, R.; Zalesak, J.; Zambelli, L.; Zamorano, B.; Zani, A.; Zazueta, L.; Zeller, G.P.; Zennamo, J.; Zeug, K.; Zhang, C.; Zhao, M.; Zhivun, E.; Zhu, G.; Zimmerman, E.D.; Zito, M.; Zucchelli, S.; Zuklin, J.; Zutshi, V.; Zwaska, R.The sensitivity of the Deep Underground Neutrino Experiment (DUNE) to neutrino oscillation is determined, based on a full simulation, reconstruction, and event selection of the far detector and a full simulation and parameterized analysis of the near detector. Detailed uncertainties due to the flux prediction, neutrino interaction model, and detector effects are included. DUNE will resolve the neutrino mass hierarchy to a precision of 5σ\sigma, for all δCP\delta_{\mathrm{CP}} values, after 2 years of running with the nominal detector design and beam configuration. It has the potential to observe charge-parity violation in the neutrino sector to a precision of 3 (5σ\sigma) after an exposure of 5 (10) years, for 50\% of all δCP\delta_{\mathrm{CP}} values. It will also make precise measurements of other parameters governing long-baseline neutrino oscillation, and after an exposure of 15 years will achieve a similar sensitivity to sin22θ13\sin^{2} 2\theta_{13} to current reactor experiments.This work was supported by CNPq, FAPERJ, FAPEG and FAPESP, Brazil; CFI, IPP and NSERC, Canada; CERN; MŠMT, Czech Republic; ERDF, H2020-EU and MSCA, European Union; CNRS/IN2P3 and CEA, France; INFN, Italy; FCT, Portugal; NRF, South Korea; CAM, Fundación “La Caixa” and MICINN, Spain; SERI and SNSF, Switzerland; TÜBİTAK, Turkey; The Royal Society and UKRI/STFC, UK; DOE and NSF, United States of America. This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract No. DE-AC02-05CH11231

    Constraints on oscillation parameters from νe\nu_e appearance and νμ\nu_\mu disappearance in NOvA

    No full text
    Click on the DOI link to access the article (may not be free). WSU authors: Meyer, H.; Muether, M.; Solomey, N. The complete list includes: P. Adamson, L. Aliaga, D. Ambrose, N. Anfimov, A. Antoshkin, E. Arrieta-Diaz, K. Augsten, A. Aurisano, C. Backhouse, M. Baird, B. A. Bambah, K. Bays, B. Behera, S. Bending, R. Bernstein, V. Bhatnagar, B. Bhuyan, J. Bian, T. Blackburn, A. Bolshakova, C. Bromberg, J. Brown, G. Brunetti, N. Buchanan, A. Butkevich, V. Bychkov, M. Campbell, E. Catano-Mur, S. Childress, B. C. Choudhary, B. Chowdhury, T. E. Coan, J. A. B. Coelho, M. Colo, J. Cooper, L. Corwin, L. Cremonesi, D. Cronin-Hennessy, G. S. Davies, J. P. Davies, P. F. Derwent, R. Dharmapalan, P. Ding, Z. Djurcic, E. C. Dukes, H. Duyang, S. Edayath, R. Ehrlich, G. J. Feldman, M. J. Frank, M. Gabrielyan, H. R. Gallagher, S. Germani, T. Ghosh, A. Giri, R. A. Gomes, M. C. Goodman, V. Grichine, R. Group, D. Grover, B. Guo, A. Habig, J. Hartnell, R. Hatcher, A. Hatzikoutelis, K. Heller, A. Himmel, A. Holin, J. Hylen, F. Jediny, M. Judah, G. K. Kafka, D. Kalra, S. M. S. Kasahara, S. Kasetti, R. Keloth, L. Kolupaeva, S. Kotelnikov, I. Kourbanis, A. Kreymer, A. Kumar, S. Kurbanov, K. Lang, W. M. Lee, S. Lin, J. Liu, M. Lokajicek, J. Lozier, S. Luchuk, K. Maan, S. Magill, W. A. Mann, M. L. Marshak, K. Matera, V. Matveev, D. P. Méndez, M. D. Messier, H. Meyer, T. Miao, W. H. Miller, S. R. Mishra, R. Mohanta, A. Moren, L. Mualem, M. Muether, S. Mufson, R. Murphy, J. Musser, J. K. Nelson, R. Nichol, E. Niner, A. Norman, T. Nosek, Y. Oksuzian, A. Olshevskiy, T. Olson, J. Paley, P. Pandey, R. B. Patterson, G. Pawloski, D. Pershey, O. Petrova, R. Petti, S. Phan-Budd, R. K. Plunkett, R. Poling, B. Potukuchi, C. Principato, F. Psihas, A. Radovic, R. A. Rameika, B. Rebel, B. Reed, D. Rocco, P. Rojas, V. Ryabov, K. Sachdev, P. Sail, O. Samoylov, M. C. Sanchez, R. Schroeter, J. Sepulveda-Quiroz, P. Shanahan, A. Sheshukov, J. Singh, J. Singh, P. Singh, V. Singh, J. Smolik, N. Solomey, E. Song, A. Sousa, K. Soustruznik, M. Strait, L. Suter, R. L. Talaga, M. C. Tamsett, P. Tas, R. B. Thayyullathil, J. Thomas, X. Tian, S. C. Tognini, J. Tripathi, A. Tsaris, J. Urheim, P. Vahle, J. Vasel, L. Vinton, A. Vold, T. Vrba, B. Wang, M. Wetstein, D. Whittington, S. G. Wojcicki, J. Wolcott, N. Yadav, S. Yang, J. Zalesak, B. Zamorano, and R. Zwaska.Preprint is available in SOAR.Results are reported from an improved measurement of νμνe\nu_\mu \rightarrow \nu_e transitions by the NOvA experiment. Using an exposure equivalent to 6.05×10206.05\times10^{20} protons-on-target 33 νe\nu_e candidates were observed with a background of 8.2±0.8 (syst.). Combined with the latest NOvA νμ\nu_\mu disappearance data and external constraints from reactor experiments on sin22θ13\sin^22\theta_{13} the hypothesis of inverted mass hierarchy with θ23\theta_{23}, in the lower octant is disfavored at greater than 93%93\% C.L. for all values of δCP\delta_{CP}.U.S. Department of Energy; the U.S. National Science Foundation; the Department of Science and Technology, India; the European Research Council; the MSMT CR, GA UK, Czech Republic; the RAS, RMES, and RFBR, Russia; CNPq and FAPEG, Brazil; and the State and University of Minnesota. We are grateful for the contributions of the staffs at the University of Minnesota module assembly facility and Ash River Laboratory, Argonne National Laboratory, and Fermilab. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the U.S. DOE

    Search for active-sterile neutrino mixing using neutral-current interactions in NOvA

    No full text
    Click on the DOI link to access the article (may not be free). WSU authors: Meyer, Holger; Muether, Mathew; Solomey, Nickolas. The NOvA Collaboration includes: P. Adamson, L. Aliaga, D. Ambrose, N. Anfimov, A. Antoshkin, E. Arrieta-Diaz, K. Augsten, A. Aurisano, C. Backhouse, M. Baird, B. A. Bambah, K. Bays, B. Behera, S. Bending, R. Bernstein, V. Bhatnagar, B. Bhuyan, J. Bian, T. Blackburn, A. Bolshakova, C. Bromberg, J. Brown, G. Brunetti, N. Buchanan, A. Butkevich, V. Bychkov, M. Campbell, E. Catano-Mur, S. Childress, B. C. Choudhary, B. Chowdhury, T. E. Coan, J. A. B. Coelho, M. Colo, J. Cooper, L. Corwin, L. Cremonesi, D. Cronin-Hennessy, G. S. Davies, J. P. Davies, P. F. Derwent, R. Dharmapalan, P. Ding, Z. Djurcic, E. C. Dukes, H. Duyang, S. Edayath, R. Ehrlich, G. J. Feldman, M. J. Frank, M. Gabrielyan, H. R. Gallagher, S. Germani, T. Ghosh, A. Giri, R. A. Gomes, M. C. Goodman, V. Grichine, M. Groh, R. Group, D. Grover, B. Guo, A. Habig, J. Hartnell, R. Hatcher, A. Hatzikoutelis, K. Heller, A. Himmel, A. Holin, B. Howard, J. Hylen, F. Jediny, M. Judah, G. K. Kafka, D. Kalra, S. M. S. Kasahara, S. Kasetti, R. Keloth, L. Kolupaeva, S. Kotelnikov, I. Kourbanis, A. Kreymer, A. Kumar, S. Kurbanov, T. Lackey, K. Lang, W. M. Lee, S. Lin, M. Lokajicek, J. Lozier, S. Luchuk, K. Maan, S. Magill, W. A. Mann, M. L. Marshak, K. Matera, V. Matveev, D. P. Méndez, M. D. Messier, H. Meyer, T. Miao, W. H. Miller, S. R. Mishra, R. Mohanta, A. Moren, L. Mualem, M. Muether, S. Mufson, R. Murphy, J. Musser, J. K. Nelson, R. Nichol, E. Niner, A. Norman, T. Nosek, Y. Oksuzian, A. Olshevskiy, T. Olson, J. Paley, R. B. Patterson, G. Pawloski, D. Pershey, O. Petrova, R. Petti, S. Phan-Budd, R. K. Plunkett, R. Poling, B. Potukuchi, C. Principato, F. Psihas, A. Radovic, R. A. Rameika, B. Rebel, B. Reed, D. Rocco, P. Rojas, V. Ryabov, K. Sachdev, P. Sail, O. Samoylov, M. C. Sanchez, R. Schroeter, J. Sepulveda-Quiroz, P. Shanahan, A. Sheshukov, J. Singh, J. Singh, P. Singh, V. Singh, J. Smolik, N. Solomey, E. Song, A. Sousa, K. Soustruznik, M. Strait, L. Suter, R. L. Talaga, P. Tas, R. B. Thayyullathil, J. Thomas, X. Tian, S. C. Tognini, J. Tripathi, A. Tsaris, J. Urheim, P. Vahle, J. Vasel, L. Vinton, A. Vold, T. Vrba, B. Wang, M. Wetstein, D. Whittington, S. G. Wojcicki, J. Wolcott, N. Yadav, S. Yang, J. Zalesak, B. Zamorano, and R. Zwaska.We report results from the first search for sterile neutrinos mixing with active neutrinos through a reduction in the rate of neutral-current interactions over a baseline of 810\,km between the NOvA detectors. Analyzing a 14-kton detector equivalent exposure of 6.06×\times1020^{20} protons-on-target in the NuMI beam at Fermilab, we observe 95 neutral-current candidates at the Far Detector compared with 83.5 \pm 9.7 \mbox{(stat.)} \pm 9.4 \mbox{(syst.)} events predicted assuming mixing only occurs between active neutrino species. No evidence for νμνs\nu_{\mu} \rightarrow \nu_{s} transitions is found. Interpreting these results within a 3+1 model, we place constraints on the mixing angles θ24<20.8\theta_{24}<20.8^{\circ} and θ34<31.2\theta_{34}<31.2^{\circ} at the 90% C.L. for 0.05 eV2Δm4120.5 eV20.05~eV^2\leq \Delta m^2_{41}\leq 0.5~eV^2, the range of mass splittings that produce no significant oscillations over the Near Detector baseline.Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. This research was supported by the U.S. Department of Energy; the U.S. National Science Foundation; the Department of Science and Technology, India; the European Research Council; the MSMT CR, GA UK, Czech Republic; the RAS, RMES, and RFBR, Russia; CNPq and FAPEG, Brazil; and the State and University of Minnesota
    corecore