2,470 research outputs found

    How we can use Twitter data to better understand weather-related depression

    Get PDF
    The weather can have a profound influence on many people’s emotional states, but until now it has been difficult to quantify these effects. The advent of social media has now made it much easier to explore the relationship between seasonality and the prevalence of depression. In new research which uses data from more than 600 million tweets over a one year period, Wei Yang, along with Lan Mu and Ye Shen find that climate risk factors for depression are different and localized, depending on the area in question. They write that using such social media data has benefits over traditional data collecting methods, and may have the potential to transform clinical practice for some diseases

    A readily accessible multifunctional probe: simultaneous recognition of the cation ZN²⁺ and the anion F⁻ via distinguishable wavelengths

    Get PDF
    The probe 1 was readily prepared via condensation of 8-formyl-7-hydroxy-coumarin and carbonic dihydrazide in a one-step procedure. Probe 1 exhibited high sensitivity and selectivity towards Zn²⁺ and F⁻ through a “turn-on” fluorescence response and/or ratiometric colorimetric response with low detection limits of the order of 10-8 M. The complex behaviour was fully investigated by spectral titration, isothermal titration calorimetry, 1H NMR spectroscopic titration and mass spectrometry. Interestingly, probe 1 not only recognizes the cation Zn²⁺ and the anion F⁻, but can also distinguish between these two ions via the max wavelength in their UV-vis spectra (360 nm for 1-Zn²⁺ versus 400 nm for 1-F⁻ complex) or their fluorescent spectra (λₑₓ / λₑm = 360 nm/ 454 nm for 1-Zn²⁺ versus λₑₓ / λₑm = 400 nm/ 475 nm for 1-F⁻ complex) due to their differing red-shifts. Additionally, probe 1 has been further explored in the detection of Zn²⁺ in living cells

    AMPHIBIAN DISTRIBUTION IN THE GEORGIA SEA ISLANDS: IMPLICATIONS FROM THE PAST AND FOR THE FUTURE

    Get PDF
    We summarized amphibian distributions for 12 coastal islands in Georgia, USA. Occurrence among islands was correlated with life history traits, habitats, island size, distance to other islands, and island geological age. Species’ distributions were determined from published literature. Island sizes and vegetation types were derived from 2011 Georgia Department of Natural Resources habitat maps, which included both federal and state vegetation classification systems. Species occurring on more islands tended to have greater total reproductive output (i.e., life span >4 years, and annual egg production >1,000 eggs) and adults had tolerance of brackish environs. Larger islands had great­er area of freshwater wetlands, predominantly short hydroperiod (<6 months). Species tied to long hydroperiod wetlands (>6 months) were more restricted in their distribution across islands. Overall, larger islands supported more species, but the correlation was weaker for geologically younger Ho­locene islands (age <11,000 years). While Euclidean distance between islands does not necessarily preclude inter-island dispersal, inhospitable habitat for amphibians (brackish tidal marshes and creeks interspersed with wide rivers) suggests that inter-island dispersal is very limited. The paucity of recent occurrence data for amphibians in this dynamic coastal region, let alone standardized annual moni­toring data, hinders efforts to model species’ vulnerability in a region susceptible to sea level rise and development pressure. The most common survey method, standardized amphibian vocal surveys, will detect Anuran reproductive efforts, but is unlikely to ascertain if breeding was successful or to detect salamanders. While it will not replace actual population data, consideration of critical life-history traits and breeding habitat availability can be used to direct management to support long-term species per­sistence in changing environs. Even common amphibians in coastal conservation areas of Georgia are vulnerable to increasing population isolation caused by unsuitable habitat

    On the validity of the definition of angular momentum in general relativity

    Full text link
    We exam the validity of the definition of the ADM angular momentum without the parity assumption. Explicit examples of asymptotically flat hypersurfaces in the Minkowski spacetime with zero ADM energy-momentum vector and finite non-zero angular momentum vector are presented. We also discuss the Beig-\'O Murchadha-Regge-Teitelboim center of mass and study analogous examples in the Schwarzschild spacetime.Comment: References are updated, and typos and computational errors are corrected. Accepted by Ann. Henri Poincar

    A ratiometric Al³⁺ ion probe based on the coumarin-quinoline FRET system

    Get PDF
    A coumarin-quinoline based fluorescence resonance energy transfer (FRET) system (TCQ) has been synthesized and employed as a ratiometric fluorescence probe. The selective fluorescent response of the probe TCQ toward Al³⁺ was devised by employing a quinoline moiety as a FRET energy donor with a coumarin moiety as an energy acceptor. The quinoline emission at 390 nm decreased and the coumarin emission at 480 nm increased concurrently on addition of Al³⁺ under excitation wavelength at 253 nm. The TCQ probe exhibited high selectivity for Al³⁺ as compared to other tested metal ions and the ratiometric sensing of Al³⁺ was determined by plotting the fluorescence intensity ratio at 480 nm and 390 nm versus Al³⁺ ion concentration. Moreover, test strips based on TCQ were fabricated, which were found to act as a convenient and efficient Al³⁺ ion detection kit. Furthermore, this system has been used for imaging of Al³⁺ in living cells

    Characterization of the aggregation-induced enhanced emission of N,N'-bis(4-methoxysalicylide)benzene-1,4-diamine

    Get PDF
    © 2015 Springer Science+Business Media New York. N,N′-bis(4-methoxysalicylide)benzene-1,4-diamine (S1) was synthesized from 4-methoxysalicylaldehyde and p-phenylenediamine and it was found to exhibit interesting aggregation-induced emission enhancement (AIEE) characteristics. In aprotic solvent, S1 displayed very weak fluorescence, whilst strong emission was observed when in protic solvent. The morphology characteristics and luminescent properties of S1 were determined from the fluorescence and UV absorption spectra, SEM, fluorescence microscope and grading analysis. Analysis of the single crystal diffraction data infers that the intramolecular hydrogen bonding constitutes to a coplanar structure and orderly packing in aggregated state, which in turn hinders intramolecular C-N single bond rotation. Given that the three benzene rings formed a large plane conjugated structure, the fluorescence emission was significantly enhanced. The absolute fluorescence quantum yield and fluorescence lifetime also showed that radiation transition was effectively enhanced in the aggregated state. Moreover, the AIEE behavior of S1 suggests there is a potential application in the fluorescence sensing of some volatile organic solvents

    A single chemosensor for multiple analytes: fluorogenic and ratiometric absorbance detection of Zn²⁺, Mg²⁺ and F⁻, and its cell imaging

    Get PDF
    A simple coumarin based sensor 1 has been synthesized from the condensation reaction of 7-hydroxycoumarin and ethylenediamine via the intermediate 7-hydroxy-8-aldehyde-coumarin. As a multiple analysis sensor, 1 can monitor Zn²⁺ with the fluorescence enhanced at 457 nm, and ratiometric detection at 290 nm, 350 nm and 420 nm in DMF/H₂O (1/4, v/v) medium. Sensor 1 can also monitor Mg²⁺ with the fluorescence enhanced at 430 nm, and ratiometric detection at 290 nm, 370 nm and 430 nm in DMF medium through the interaction of chelation enhance fluorescence (CHEF) with metal ions. Furthermore, 1 also can monitor F⁻ with the fluorescence enhanced at 460 nm, and ratiometric detection at 290 nm and 390 nm in DMF medium simultaneously via hydrogen bonding and deprotonation with F− anion. Spectral titration, isothermal titration calorimetry and mass spectrometry revealed that the sensor formed a 1:1 complex with Mg²⁺, Zn²⁺ or F⁻, with stability constants of 4.5 × 10⁶, 3.4 × 10⁶, 8.0 × 10⁴ M⁻1 respectively. The complexation of the ions by 1 was an exothermic reaction driven by entropy processes. Furthermore, the sensor exhibits good membrane-permeability and was capable of monitoring at the intracellular Zn²⁺ level in living cells

    Rhodamine-triazine based probes for Cu²⁺ in aqueous media and living cells

    Get PDF
    The performance of a number of rhodamine-triazine derivatives(probe R1~R4) which utilize rhodamine as the fluorophore with cyanuric chloride as the molecular platform have been evaluated. Spectroscopic analysis revealed that differing structural substitution patterns of the probe resulted in different sensitivity and selectivity for specific metal ions. The probes R1 and R2 were fluorescent/colorimetric probes for Cu²⁺, whilst R3 and R4 were probes for Al³⁺, Cr³⁺ and Fe³⁺. The probe R2 exhibited superior recognition for Cu²⁺ in neutral aqueous medium, and the optical switching behavior of R2 for Cu²⁺ and S²⁻ could be used to construct a molecular logic gate. In addition, fluorescence imaging of probe R2 for Cu²⁺ in living cells was demonstrated
    corecore