52 research outputs found
Classifying tree structures using elastic matching of sequence encodings
This document is the Accepted Manuscript version of the following article: Angeliki Skoura, Iosif Mporas, Vasileios Megalooikonomou, ‘Classifying tree structures using elastic matching of sequence encodings’, Neurocomputing, Vol. 163, pp. 151-159, February 2015. The Version of Record is available online at: DOI: https://doi.org/10.1016/j.neucom.2014.08.083. This Manuscript version is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/ ), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.Structures of tree topology are frequently encountered in nature and in a range of scientific domains. In this paper, a multi-step framework is presented to classify tree topologies introducing the idea of elastic matching of their sequence encodings. Initially, representative sequences of the branching topologies are obtained using node labeling and tree traversal schemes. The similarity between tree topologies is then quantified by applying elastic matching techniques. The resulting sequence alignment reveals corresponding node groups providing a better understanding of matching tree topologies. The new similarity approach is explored using various classification algorithms and is applied to a medical dataset outperforming state-of-the-art techniques by at least 6.6% and 3.5% in terms of absolute specificity and accuracy correspondingly.Peer reviewe
Energy Disaggregation Using Elastic Matching Algorithms
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)In this article an energy disaggregation architecture using elastic matching algorithms is presented. The architecture uses a database of reference energy consumption signatures and compares them with incoming energy consumption frames using template matching. In contrast to machine learning-based approaches which require significant amount of data to train a model, elastic matching-based approaches do not have a model training process but perform recognition using template matching. Five different elastic matching algorithms were evaluated across different datasets and the experimental results showed that the minimum variance matching algorithm outperforms all other evaluated matching algorithms. The best performing minimum variance matching algorithm improved the energy disaggregation accuracy by 2.7% when compared to the baseline dynamic time warping algorithm.Peer reviewedFinal Published versio
Statistical and Electrical Features Evaluation for Electrical Appliances Energy Disaggregation
In this paper we evaluate several well-known and widely used machine learning algorithms for regression in the energy disaggregation task. Specifically, the Non-Intrusive Load Monitoring approach was considered and the K-Nearest-Neighbours, Support Vector Machines, Deep Neural Networks and Random Forest algorithms were evaluated across five datasets using seven different sets of statistical and electrical features. The experimental results demonstrated the importance of selecting both appropriate features and regression algorithms. Analysis on device level showed that linear devices can be disaggregated using statistical features, while for non-linear devices the use of electrical features significantly improves the disaggregation accuracy, as non-linear appliances have non-sinusoidal current draw and thus cannot be well parametrized only by their active power consumption. The best performance in terms of energy disaggregation accuracy was achieved by the Random Forest regression algorithm.Peer reviewedFinal Published versio
Robust energy disaggregation using appliance-specific temporal contextual information
An extension of the baseline non-intrusive load monitoring approach for energy disaggregation using temporal contextual information is presented in this paper. In detail, the proposed approach uses a two-stage disaggregation methodology with appliance-specific temporal contextual information in order to capture time-varying power consumption patterns in low-frequency datasets. The proposed methodology was evaluated using datasets of different sampling frequency, number and type of appliances. When employing appliance-specific temporal contextual information, an improvement of 1.5% up to 7.3% was observed. With the two-stage disaggregation architecture and using appliance-specific temporal contextual information, the overall energy disaggregation accuracy was further improved across all evaluated datasets with the maximum observed improvement, in terms of absolute increase of accuracy, being equal to 6.8%, thus resulting in a maximum total energy disaggregation accuracy improvement equal to 10.0%.Peer reviewedFinal Published versio
2D Transformations of Energy Signals for Energy Disaggregation
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/)The aim of Non-Intrusive Load Monitoring is to estimate the energy consumption of individual electrical appliances by disaggregating the overall power consumption that has been sampled from a smart meter at a house or commercial/industrial building. Last decade’s developments in deep learning and the utilization of Convolutional Neural Networks have improved disaggregation accuracy significantly, especially when utilizing two-dimensional signal representations. However, converting time series’ to two-dimensional representations is still an open challenge, and it is not clear how it influences the performance of the energy disaggregation. Therefore, in this article, six different two-dimensional representation techniques are compared in terms of performance, runtime, influence on sampling frequency, and robustness towards Gaussian white noise. The evaluation results show an advantage of two-dimensional imaging techniques over univariate and multivariate features. In detail, the evaluation results show that: first, the active and reactive power-based signatures double Fourier based signatures, as well as outperforming most of the other approaches for low levels of noise. Second, while current and voltage signatures are outperformed at low levels of noise, they perform best under high noise conditions and show the smallest decrease in performance with increasing noise levels. Third, the effect of the sampling frequency on the energy disaggregation performance for time series imaging is most prominent up to 1.2 kHz, while, above 1.2 kHz, no significant improvements in terms of performance could be observed.Peer reviewe
Double Fourier Integral Analysis based Convolutional Neural Network Regression for High-Frequency Energy Disaggregation
© 2021 IEEE. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/ 10.1109/TETCI.2021.3086226Non-Intrusive Load Monitoring aims to extract the energy consumption of individual electrical appliances through disaggregation of the total power load measured by a single smart-meter. In this article we introduce Double Fourier Integral Analysis in the Non-Intrusive Load Monitoring task in order to provide more distinct feature descriptions compared to current or voltage spectrograms. Specifically, the high-frequency aggregated current and voltage signals are transformed into two-dimensional unit cells as calculated by Double Fourier Integral Analysis and used as input to a Convolutional Neural Network for regression. The performance of the proposed methodology was evaluated in the publicly available U.K.-DALE dataset. The proposed approach improves the estimation accuracy by 7.2% when compared to the baseline energy disaggregation setup using current and voltage spectrograms.Peer reviewe
PyDTS: A Python Toolkit for Deep Learning Time Series Modelling
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Abstract In this article, the topic of time series modelling is discussed. It highlights the criticality of analysing and forecasting time series data across various sectors, identifying five primary application areas: denoising, forecasting, nonlinear transient modelling, anomaly detection, and degradation modelling. It further outlines the mathematical frameworks employed in a time series modelling task, categorizing them into statistical, linear algebra, and machine- or deep-learning-based approaches, with each category serving distinct dimensions and complexities of time series problems. Additionally, the article reviews the extensive literature on time series modelling, covering statistical processes, state space representations, and machine and deep learning applications in various fields. The unique contribution of this work lies in its presentation of a Python-based toolkit for time series modelling (PyDTS) that integrates popular methodologies and offers practical examples and benchmarking across diverse datasets.Peer reviewe
Reducing Grid Distortions Utilizing Energy Demand Prediction and Local Storages
© 2021 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.Energy storage systems will play a key role in the establishment of future smart grids. Specifically, the integration of storages into the grid architecture serves several purposes, including the handling of the statistical variation of energy supply through increasing usage of renewable energy sources as well as the optimization of the daily energy usage through load scheduling. This article is focusing on the reduction of the grid distortions using non-linear convex optimization. In detail an analytic storage model is used in combination with a load forecasting technique based on socio-economic information of a community of households. It is shown that the proposed load forecasting technique leads to significantly reduced forecasting errors (relative reductions up-to 14.2%), while the proposed storage optimization based on non-linear convex optimizations leads to 12.9% reductions in terms of peak to average values for ideal storages and 9.9% for storages with consideration of losses respectively. Furthermore, it was shown that the largest improvements can be made when storages are utilized for a community of households with a storage size of 4.6-8.2 kWh per household showing the effectiveness of shared storages as well as load forecasting for a community of households.Peer reviewe
Evaluation of Features in Detection of Dislike Responses to Audio–Visual Stimuli from EEG Signals
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).There is a strong correlation between the like/dislike responses to audio–visual stimuli and the emotional arousal and valence reactions of a person. In the present work, our attention is focused on the automated detection of dislike responses based on EEG activity when music videos are used as audio–visual stimuli. Specifically, we investigate the discriminative capacity of the Logarithmic Energy (LogE), Linear Frequency Cepstral Coefficients (LFCC), Power Spectral Density (PSD) and Discrete Wavelet Transform (DWT)-based EEG features, computed with and without segmentation of the EEG signal, on the dislike detection task. We carried out a comparative evaluation with eighteen modifications of the above-mentioned EEG features that cover different frequency bands and use different energy decomposition methods and spectral resolutions. For that purpose, we made use of Naïve Bayes classifier (NB), Classification and regression trees (CART), k-Nearest Neighbors (kNN) classifier, and support vector machines (SVM) classifier with a radial basis function (RBF) kernel trained with the Sequential Minimal Optimization (SMO) method. The experimental evaluation was performed on the well-known and widely used DEAP dataset. A classification accuracy of up to 98.6% was observed for the best performing combination of pre-processing, EEG features and classifier. These results support that the automated detection of like/dislike reactions based on EEG activity is feasible in a personalized setup. This opens opportunities for the incorporation of such functionality in entertainment, healthcare and security applications.Peer reviewedFinal Published versio
Real-Time Management of Multimodal Streaming Data for Monitoring of Epileptic Patients
This is the Accepted Manuscript version of the following article: I. Mporas, D. Triantafyllopoulos, V. Megalooikonomou, “Real-Time Management of Multimodal Streaming Data for Monitoring of Epileptic Patients”, Journal of Medical Systems, Vol. 40(45), December 2015. The final published versions is available at: https://link.springer.com/article/10.1007%2Fs10916-015-0403-3 © Springer Science+Business Media New York 2015.New generation of healthcare is represented by wearable health monitoring systems, which provide real-time monitoring of patient’s physiological parameters. It is expected that continuous ambulatory monitoring of vital signals will improve treatment of patients and enable proactive personal health management. In this paper, we present the implementation of a multimodal real-time system for epilepsy management. The proposed methodology is based on a data streaming architecture and efficient management of a big flow of physiological parameters. The performance of this architecture is examined for varying spatial resolution of the recorded data.Peer reviewedFinal Accepted Versio
- …