2 research outputs found
Reconstructibility of unrooted level-k phylogenetic networks from distances
A phylogenetic network is a graph-theoretical tool that is used by biologists to represent the evolutionary history of a collection of species. One potential way of constructing such networks is via a distance-based approach, where one is asked to find a phylogenetic network that in some way represents a given distance matrix, which gives information on the evolutionary distances between present-day taxa. Here, we consider the following question. For which k are unrooted level-k networks uniquely determined by their distance matrices? We consider this question for shortest distances as well as for the case that the multisets of all distances is given. We prove that level-1 networks and level-2 networks are reconstructible from their shortest distances and multisets of distances, respectively. Furthermore we show that, in general, networks of level higher than 1 are not reconstructible from shortest distances and that networks of level higher than 2 are not reconstructible from their multisets of distances.Optimizatio
An algorithm for reconstructing level-2 phylogenetic networks from trinets
Evolutionary histories for species that cross with one another or exchange genetic material can be represented by leaf-labelled, directed graphs called phylogenetic networks. A major challenge in the burgeoning area of phylogenetic networks is to develop algorithms for building such networks by amalgamating small networks into a single large network. The level of a phylogenetic network is a measure of its deviation from being a tree; the higher the level of a network, the less treelike it becomes. Various algorithms have been developed for building level-1 networks from small networks. However, level-1 networks may not be able to capture the complexity of some data sets. In this paper, we present a polynomial-time algorithm for constructing a rooted binary level-2 phylogenetic network from a collection of 3-leaf networks or trinets. Moreover, we prove that the algorithm will correctly reconstruct such a network if it is given all of the trinets in the network as input. The algorithm runs in time O(tâ‹…n+n4) with t the number of input trinets and n the number of leaves. We also show that there is a fundamental obstruction to constructing level-3 networks from trinets, and so new approaches will need to be developed for constructing level-3 and higher level-networks.OptimizationElectrical Engineering, Mathematics and Computer Scienc