51 research outputs found
On effect of chloroform on electrical activity of proteinoids
Proteinoids, or thermal proteins, produce hollow microspheres in aqueous solutions. Ensembles of the microspheres produce endogenous spikes of electrical activity, similar to that of neurons. To make the first step toward the evaluation of the mechanisms of such electrical behaviour, we decided to expose proteinoids to chloroform. We found that while chloroform does not inhibit the electrical oscillations of proteinoids, it causes substantial changes in the patterns of electrical activity. Namely, incremental chloroform exposure strongly affects proteinoid microsphere electrical activity across multiple metrics. As chloroform levels rise, the spike potential drops from 0.9 mV under control conditions to 0.1 mV at 25 mg/mL. This progressive spike potential decrease suggests chloroform suppresses proteinoid electrical activity. The time between spikes, the interspike period, follows a similar pattern. Minimal chloroform exposure does not change the average interspike period, while higher exposures do. It drops from 23.2 min under control experiments to 3.8 min at 25 mg/mL chloroform, indicating increased frequency of the electrical activity. These findings might lead to a deeper understanding of the electrical activity of proteinoids and their potential application in the domain of bioelectronics
Low frequency electrical waves in ensembles of proteinoid microspheres
Proteinoids (thermal proteins) are produced by heating amino acids to their melting point and initiation of polymerisation to produce polymeric chains. Amino acid-like molecules, or proteinoids, can condense at high temperatures to create aggregation structures called proteinoid microspheres, which have been reported to exhibit strong electrical oscillations. When the amino acids L-glutamic acid (L-Glu) and L-aspartic acid (L-Asp) were combined with electric fields of varying frequencies and intensities, electrical activity resulted. We recorded electrical activity of the proteinoid microspheres’ ensembles via a pair of differential electrodes. This is analogous to extracellular recording in physiology or EEG in neuroscience but at micro-level. We discovered that the ensembles produce spikes of electrical potential, an average duration of each spike is 26min and average amplitude is 1mV. The spikes are typically grouped in trains of two spikes. The electrical activity of the ensembles can be tuned by external stimulation because ensembles of proteinoid microspheres can generate and propagate electrical activity when exposed to electric fields
Learning in ensembles of proteinoid microspheres
Proteinoids are thermal proteins which form microspheres in water in the presence of salt. Ensembles of proteinoid microspheres exhibit passive nonlinear electrical properties and active neuron-like spiking of electrical potential. We propose that various neuromorphic computing architectures can be prototyped from the proteinoid microspheres. A key feature of a neuromorphic system is a learning. Through the use of optical and resistance measurements, we study mechanisms of learning in ensembles of proteinoid microspheres. We analyse 16 types of proteinoids study and their intrinsic morphology and electrical properties. We demonstrate that proteinoids can learn, memorize and habituate, making them a promising candidate for novel computing
On oscillations in the external electrical potential of sea urchins
Sea urchins display complex bioelectric activity patterns, even with their decentralized nervous system. Electrophysiological recordings showed distinct spiking patterns. The baseline potential was about 8.80 mV. It had transient spikes with amplitudes up to 21.05 mV. We observed many types of depolarization events. They included burst-like activity and prolonged state fluctuations lasting several seconds. Frequency domain analysis showed a power-law behavior. It had a scaling exponent of 6.21 ± 0.06, indicating critical dynamics. The analysis showed potential variations between 3.69 and 21.05 mV. The oscillation periods ranged from 4 to 3102 s. The varied timing of bioelectric signals suggests that these organisms can process information. This challenges traditional views of neural computation in simpler animals. These findings provide quantitative insights into the complex signaling mechanisms of the sea urchin’s distributed nervous system
Influence of proteinoids on calcium carbonate polymorphs precipitation in supersaturated solutions
Proteinoids, or thermal proteins, are amino acid polymers formed at high temperatures by non-biological processes. Pro- teinoids form microspheres in liquids. The microspheres exhibit electrical activity similar to that of neurons. The electrically spiking microspheres are seen as proto-neurons capable of forming networks and carrying out information transmission and processing. Previously, we demonstrated that ensembles of proteinoid microspheres can respond to optical and electrical stimulation, implement logical gates, recognise arbitrary wave forms, and undergo learning. Thus, the ensembles of proteinoid microspheres can be seen as proto-brains. In present paper we decided to uncover morphologies of these proto-brains. We utilise a supersaturated solution of calcium carbonate to facilitate the crystallisation of proteinoids and subsequently generate proteinoid brain structures. Our hypothesis suggests that calcium carbonate crystals have the potential to serve as scaffolds and connectors for proteinoid microspheres, thereby improving their electrical properties and facilitating communication. In this section, we outline the experimental methods and techniques used in our study. We share our findings and results regarding the morphology, composition, stability, and functionality of proteinoid brain structures. We discuss the implications and applications of our work in the fields of bio-inspired computing, artificial neural networks, and origin of life research
Proto–neural networks from thermal proteins
Proteinoids are synthetic polymers that have structural similarities to natural proteins, and their formation is achieved through the application of heat to amino acid combinations in a dehydrated environment. The thermal proteins, initially synthesised by Sidney Fox during the 1960s, has the ability to undergo self-assembly, resulting in the formation of microspheres that resemble cells. These microspheres have fascinating biomimetic characteristics. In recent studies, substantial advancements have been made in elucidating the electrical signalling phenomena shown by proteinoids, hence showcasing their promising prospects in the field of neuro-inspired computing. This study demonstrates the advancement of experimental prototypes that employ proteinoids in the construction of fundamental neural network structures. The article provides an overview of significant achievements in proteinoid systems, such as the demonstration of electrical excitability, emulation of synaptic functions, capabilities in pattern recognition, and adaptability of network structures. This study examines the similarities and differences between proteinoid networks and spontaneous neural computation. We examine the persistent challenges associated with deciphering the underlying mechanisms of emergent proteinoid-based intelligence. Additionally, we explore the potential for developing bio-inspired computing systems using synthetic thermal proteins in forthcoming times. The results of this study offer a theoretical foundation for the advancement of adaptive, self-assembling electronic systems that operate using artificial bio-neural principles. [Abstract copyright: Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.
Memfractance of proteinoids
Proteinoids, or thermal proteins, are amino acid polymers formed at high temperatures by nonbiological processes. The objective of this study is to examine the memfractance characteristics of proteinoids within a supersaturated hydroxyapatite solution. The ionic solution utilized for the current-voltage (I-V) measurements possessed an ionic strength of 0.15 mol/L, a temperature of 37 °C, and a pH value of 7.4. The I-V curves exhibited distinct spikes, which are hypothesized to arise from the capacitive charging and discharging of the proteinoid-hydroxyapatite media. The experimental results demonstrated a positive correlation between the concentration of proteinoids and the observed number of spikes in the I-V curves. This observation provides evidence in favor of the hypothesis that the spikes originate from the proteinoids’ capacitive characteristics. The memfractance behavior exemplifies the capacity of proteinoids to retain electrical charge within the hydrated hydroxyapatite media. Additional investigation is required in order to comprehensively identify the memcapacitive phenomena and delve into their implications for models of protocellular membranes. In a nutshell, this study provides empirical support for the existence of capacitive membrane-memfractance mechanisms in ensembles of proteinoids
Modulation of electrical activity of proteinoid microspheres with chondroitin sulfate clusters
Proteinoids—thermal proteins—are produced by heating amino acids to their melting point and initiation of polymerisation to produce polymeric chains. Proteinoids swell in aqueous solution into hollow microspheres. The proteinoid microspheres produce endogenous burst of electrical potential spikes and change patterns of their electrical activity in response to illumination. These microspheres were proposed as proto-neurons in 1950s. To evaluate pathways of potential evolution of these proto-neurons and their applicability of chimera neuromorphic circuits we decided to hybridise them with hondroitin sulphate (CS) clusters, which form a part of the brain extracellular matrix. We found a novel synergistic interaction between CS clusters and proteinoids that dramatically affects patterns of electrical activity of proteinoid microspheres. Our study might shed light on evolution of synaptic plasticity’s molecular mechanisms and the role of extracellular matrix-protein interactions in learning, and open up possibilities for novel methods in unconventional computing and the development of adaptable, brain-inspired computational systems
Proto-neurons from abiotic polypeptides
To understand the origins of life, we must first gain a grasp of the unresolved emergence of the first informational polymers and cell-like assemblies that developed into living systems. Heating amino acid mixtures to their boiling point produces thermal proteins that self-assemble into membrane-bound protocells, offering a compelling abiogenic route for forming polypeptides. Recent research has revealed the presence of electrical excitability and signal processing capacities in proteinoids, indicating the possibility of primitive cognitive functions and problem-solving capabilities. This review examines the characteristics exhibited by proteinoids, including electrical activity and self-assembly properties, exploring the possible roles of such polypeptides under prebiotic conditions in the emergence of early biomolecular complexity. Experiments showcasing the possibility of unconventional computing with proteinoids as well as modelling proteinoid assemblies into synthetic proto-brains are given. Proteinoids’ robust abiogenic production, biomimetic features, and computational capability shed light on potential phases in the evolution of polypeptides and primitive life from the primordial environment
- …