75 research outputs found
Hierarchical RNN with Static Sentence-Level Attention for Text-Based Speaker Change Detection
Speaker change detection (SCD) is an important task in dialog modeling. Our
paper addresses the problem of text-based SCD, which differs from existing
audio-based studies and is useful in various scenarios, for example, processing
dialog transcripts where speaker identities are missing (e.g., OpenSubtitle),
and enhancing audio SCD with textual information. We formulate text-based SCD
as a matching problem of utterances before and after a certain decision point;
we propose a hierarchical recurrent neural network (RNN) with static
sentence-level attention. Experimental results show that neural networks
consistently achieve better performance than feature-based approaches, and that
our attention-based model significantly outperforms non-attention neural
networks.Comment: In Proceedings of the ACM on Conference on Information and Knowledge
Management (CIKM), 201
Towards Neural Speaker Modeling in Multi-Party Conversation: The Task, Dataset, and Models
Neural network-based dialog systems are attracting increasing attention in
both academia and industry. Recently, researchers have begun to realize the
importance of speaker modeling in neural dialog systems, but there lacks
established tasks and datasets. In this paper, we propose speaker
classification as a surrogate task for general speaker modeling, and collect
massive data to facilitate research in this direction. We further investigate
temporal-based and content-based models of speakers, and propose several
hybrids of them. Experiments show that speaker classification is feasible, and
that hybrid models outperform each single component.Comment: In Proceedings of the Language Resources and Evaluation Conference
(LREC), 201
Convolutional Neural Networks over Tree Structures for Programming Language Processing
Programming language processing (similar to natural language processing) is a
hot research topic in the field of software engineering; it has also aroused
growing interest in the artificial intelligence community. However, different
from a natural language sentence, a program contains rich, explicit, and
complicated structural information. Hence, traditional NLP models may be
inappropriate for programs. In this paper, we propose a novel tree-based
convolutional neural network (TBCNN) for programming language processing, in
which a convolution kernel is designed over programs' abstract syntax trees to
capture structural information. TBCNN is a generic architecture for programming
language processing; our experiments show its effectiveness in two different
program analysis tasks: classifying programs according to functionality, and
detecting code snippets of certain patterns. TBCNN outperforms baseline
methods, including several neural models for NLP.Comment: Accepted at AAAI-1
- …