2,308 research outputs found

    Reasoning with Data Flows and Policy Propagation Rules

    Get PDF
    Data-oriented systems and applications are at the centre of current developments of the World Wide Web. In these scenarios, assessing what policies propagate from the licenses of data sources to the output of a given data-intensive system is an important problem. Both policies and data flows can be described with Semantic Web languages. Although it is possible to define Policy Propagation Rules (PPR) by associating policies to data flow steps, this activity results in a huge number of rules to be stored and managed. In a recent paper, we introduced strategies for reducing the size of a PPR knowledge base by using an ontology of the possible relations between data objects, the Datanode ontology, and applying the (A)AAAA methodology, a knowledge engineering approach that exploits Formal Concept Analysis (FCA). In this article, we investigate whether this reasoning is feasible and how it can be performed. For this purpose, we study the impact of compressing a rule base associated with an inference mechanism on the performance of the reasoning process. Moreover, we report on an extension of the (A)AAAA methodology that includes a coherency check algorithm, that makes this reasoning possible. We show how this compression, in addition to being beneficial to the management of the knowledge base, also has a positive impact on the performance and resource requirements of the reasoning process for policy propagation

    Propagating Data Policies: a User Study

    Get PDF
    When publishing data, data licences are used to specify the actions that are permitted or prohibited, and the duties that target data consumers must comply with. However, in complex environments such as a smart city data portal, multiple data sources are constantly being combined, processed and redistributed. In such a scenario, deciding which policies apply to the output of a process based on the licences attached to its input data is a difficult, knowledge- intensive task. In this paper, we evaluate how automatic reasoning upon semantic representations of policies and of data flows could support decision making on policy propagation. We report on the results of a user study designed to assess both the accuracy and the utility of such a policy-propagation tool, in comparison to a manual approach

    Rexplore: unveiling the dynamics of scholarly data

    Get PDF
    Rexplore is a novel system that integrates semantic technologies, data mining techniques, and visual analytics to provide an innovative environment for making sense of scholarly data. Its functionalities include: i) a variety of views to make sense of important trends in research; ii) a novel semantic approach for characterising research topics; iii) a very fine-grained expert search with detailed multi-dimensional parameters; iv) an innovative graph view to relate a variety of academic entities; iv) the ability to detect and explore the main communities within a research topic; v) the ability to analyse research performance at different levels of abstraction, including individual researchers, organizations, countries, and research communities

    Semantic web technology to support learning about the semantic web

    Get PDF
    This paper describes ASPL, an Advanced Semantic Platform for Learning, designed using the Magpie framework with an aim to support students learning about the Semantic Web research area. We describe the evolution of ASPL and illustrate how we used the results from a formal evaluation of the initial system to re-design the user functionalities. The second version of ASPL semantically interprets the results provided by a non-semantic web mining tool and uses them to support various forms of semantics-assisted exploration, based on pedagogical strategies such as performing later reasoning steps and problem space filtering

    Integrating web services into data intensive web sites

    Get PDF
    Designing web sites is a complex task. Ad-hoc rapid prototyping easily leads to unsatisfactory results, e.g. poor maintainability and extensibility. However, existing web design frameworks focus exclusively on data presentation: the development of specific functionalities is still achieved through low-level programming. In this paper we address this issue by describing our work on the integration of (semantic) web services into a web design framework, OntoWeaver. The resulting architecture, OntoWeaver-S, supports rapid prototyping of service centred data-intensive web sites, which allow access to remote web services. In particular, OntoWeaver-S is integrated with a comprehensive web service platform, IRS-II, for the specification, discovery, and execution of web services. Moreover, it employs a set of comprehensive site ontologies to model and represent all aspects of service-centred data-intensive web sites, and thus is able to offer high level support for the design and development process
    corecore