18 research outputs found

    Role of Extracellular Polymeric Substances (EPS) in Biofouling of Reverse Osmosis Membranes

    No full text
    This study elucidates the mechanisms by which extracellular polymeric substances (EPS) impact permeate water flux and salt rejection during biofouling of reverse osmosis (RO) membranes. RO fouling experiments were conducted with Pseudomonas aeruginosa PAO1, EPS extracted from PAO1 biofilms, and dead PAO1 cells fixed in formaldehyde. While a biofouling layer of dead bacterial cells decreases salt rejection and permeate flux by a biofilm-enhanced osmotic pressure mechanism, the EPS biofouling layer adversely impacts permeate flux by increasing the hydraulic resistance to permeate flow. During controlled fouling experiments with extracted EPS in a simulated wastewater solution, polysaccharides adsorbed on the RO membranes much more effectively than proteins (adsorption efficiencies of 61.2−88.7% and 11.6−12.4% for polysaccharides and proteins, respectively). Controlled fouling experiments with EPS in sodium chloride solutions supplemented with 0.5 mM calcium ions (total ionic strength of 15 mM) indicate that calcium increases the adsorption efficiency of polysaccharides and DNA by 2- and 3-fold, respectively. The increased adsorption of EPS onto the membrane resulted in a significant decrease in permeate water flux. Corroborating with these calcium effects, atomic force microscopy (AFM) measurements demonstrated that addition of calcium ions to the feed solution results in a marked increase in the adhesion forces between a carboxylated particle probe and the EPS layer. The increase in the interfacial adhesion forces is attributed to specific EPS-calcium interactions that play a major role in biofouling of RO membranes

    Biofouling of Reverse Osmosis Membranes: Positively Contributing Factors of <i>Sphingomonas</i>

    No full text
    In the present study, we investigate the possible contribution of <i>Sphingomonas</i> spp. glycosphingolipids (GSL) and its extracellular polymeric substances (EPS) to the initial colonization and development of biofilm bodies on reverse osmosis (RO) membranes. A combination of an RO cross-flow membrane lab unit, a quartz crystal microbalance with dissipation (QCM-D), and a rear stagnation point flow (RSPF) system with either model bacteria (<i>Sphingomonas wittichii</i>, <i>Escherichia coli</i>, and <i>Pseudomonas aeruginosa</i>) or vesicles made of the bacterial GSL or LPS was used. Results showed noticeable differences in the adhesion LPS versus GSL vesicles in the QCM-D, with the latter exhibiting 50% higher adhesion to polyamide coated crystals (mimicking an RO membrane surface). A similar trend was observed for EPS extracted from <i>S. wittichii</i>, when compared to the adhesion tendency of EPS extracted from <i>P. aeruginosa</i>. By applying the whole-cell approach in the RO lab unit, the cumulative impact of <i>S. wittichii</i> cells composing GSL and probably their EPS reduced the permeate flux during bacterial accumulation on the membrane surface. Experiments were conducted with the same amount of <i>Sphingomonas</i> spp. or <i>Escherichia coli</i> cells resulting in a two times greater flux decline in the presence of <i>S. wittichii</i>. The distinct effects of <i>Sphingomonas</i> spp. on RO membrane biofouling are likely a combination of GSL presence (known for enhancing adhesion when compared to non-GSL containing bacteria) and the EPS contributing to the overall strength of the biofilm matrix

    Viscoelastic Properties of Extracellular Polymeric Substances Can Strongly Affect Their Washing Efficiency from Reverse Osmosis Membranes

    No full text
    The role of the viscoelastic properties of biofouling layers in their removal from the membrane was studied. Model fouling layers of extracellular polymeric substances (EPS) originated from microbial biofilms of <i>Pseudomonas aeruginosa</i> PAO1 differentially expressing the Psl polysaccharide were used for controlled washing experiments of fouled RO membranes. In parallel, adsorption experiments and viscoelastic modeling of the EPS layers were conducted in a quartz crystal microbalance with dissipation (QCM-D). During the washing stage, as shear rate was elevated, significant differences in permeate flux recovery between the three different EPS layers were observed. According to the amount of organic carbon remained on the membrane after washing, the magnitude of Psl production provides elevated resistance of the EPS layer to shear stress. The highest flux recovery during the washing stage was observed for the EPS with no Psl. Psl was shown to elevate the layer’s shear modulus and shear viscosity but had no effect on the EPS adhesion to the polyamide surface. We conclude that EPS retain on the membrane as a result of the layer viscoelastic properties. These results highlight an important relation between washing efficiency of fouling layers from membranes and their viscoelastic properties, in addition to their adhesion properties

    Surface Cell Density Effects on Escherichia coli Gene Expression during Cell Attachment

    No full text
    Escherichia coli attachment to a surface initiates a complex series of interconnected signaling and regulation pathways that promote biofilm formation and maturation. The present work investigates the effect of deposited cell density on E. coli cell physiology, metabolic activity, and gene expression in the initial stages of biofilm development. Deposited cell density is controlled by exploiting the relationship between ionic strength and bacterial attachment efficiency in a packed bed column. Distinct differences in cell transcriptome are analyzed by comparing sessile cultures at two different cell surface densities and differentiating ionic strength effects by analyzing planktonic cultures in parallel. Our results indicate that operons regulating trypotophan production and the galactitol phosphotransferase system (including dihydroxyacetone phosphate synthesis) are strongly affected by cell density on the surface. Additional transcriptome and metabolomic impacts of cell density on succinate, proline, and pyroglutamic acid systems are also reported. These results are consistent with the hypothesis that surface cell density plays a major role in sessile cell physiology, commencing with the first stage of biofilm formation. These findings improve our understanding of biofilm formation in natural and engineered environmental systems and will contribute to future work ranging from pathogen migration in the environment to control of biofouling on engineered surfaces

    Antibacterial Effects of Carbon Nanotubes: Size Does Matter!

    No full text
    We provide the first evidence that the size (diameter) of carbon nanotubes (CNTs) is a key factor governing their antibacterial effects and that the likely main CNT-cytotoxicity mechanism is cell membrane damage by direct contact with CNTs. Experiments with well-characterized single-walled carbon nanotubes (SWNTs) and multiwalled carbon nanotubes (MWNTs) demonstrate that SWNTs are much more toxic to bacteria than MWNTs. Gene expression data show that in the presence of both MWNTs and SWNTs, Escherichia coli expresses high levels of stress-related gene products, with the quantity and magnitude of expression being much higher in the presence of SWNTs

    Surface Cell Density Effects on Escherichia coli Gene Expression during Cell Attachment

    No full text
    Escherichia coli attachment to a surface initiates a complex series of interconnected signaling and regulation pathways that promote biofilm formation and maturation. The present work investigates the effect of deposited cell density on E. coli cell physiology, metabolic activity, and gene expression in the initial stages of biofilm development. Deposited cell density is controlled by exploiting the relationship between ionic strength and bacterial attachment efficiency in a packed bed column. Distinct differences in cell transcriptome are analyzed by comparing sessile cultures at two different cell surface densities and differentiating ionic strength effects by analyzing planktonic cultures in parallel. Our results indicate that operons regulating trypotophan production and the galactitol phosphotransferase system (including dihydroxyacetone phosphate synthesis) are strongly affected by cell density on the surface. Additional transcriptome and metabolomic impacts of cell density on succinate, proline, and pyroglutamic acid systems are also reported. These results are consistent with the hypothesis that surface cell density plays a major role in sessile cell physiology, commencing with the first stage of biofilm formation. These findings improve our understanding of biofilm formation in natural and engineered environmental systems and will contribute to future work ranging from pathogen migration in the environment to control of biofouling on engineered surfaces

    Diminished Swelling of Cross-Linked Aromatic Oligoamide Surfaces Revealing a New Fouling Mechanism of Reverse-Osmosis Membranes

    No full text
    Swelling of the active layer of reverse osmosis (RO) membranes has an important effect on permeate water flux. The effects of organic- and biofouling on the swelling of the RO membrane active layer and the consequent changes of permeate flux are examined here. A cross-linked aromatic oligoamide film that mimics the surface chemistry of an RO polyamide membrane was synthesized stepwise on gold-coated surfaces. Foulant adsorption to the oligoamide film and its swelling were measured with a quartz crystal microbalance, and the effects of fouling on the membrane’s performance were evaluated. The foulants were extracellular polymeric substances (EPS) extracted from fouled RO membranes and organic compounds of ultrafiltration permeate (UFP) from a membrane bioreactor used to treat municipal wastewater. The adsorbed foulants affected the swelling of the cross-linked oligoamide film differently. EPS had little effect on the swelling of the oligoamide film, whereas UFP significantly impaired swelling. Permeate flux declined more rapidly under UFP fouling than it did under EPS. Foulant adsorption was shown to diminish swelling of the aromatic oligoamide surfaces. Among the already known RO membrane fouling mechanisms, a novel RO fouling mechanism is proposed, in which foulant–membrane interactions hinder membrane swelling and thus increase hydraulic resistance

    Bacterial Attachment and Viscoelasticity: Physicochemical and Motility Effects Analyzed Using Quartz Crystal Microbalance with Dissipation (QCM-D)

    No full text
    This investigation is focused on the combined effect of bacterial physicochemical characteristics and motility on cell adhesion and deposition using a flow-through quartz crystal microbalance with dissipation (QCM-D). Three model flagellated strains with different degrees of motility were selected, including a highly motile <i>Escherichia coli</i> K12 MG1655, an environmental strain <i>Sphingomonas wittichii</i> RW1, and a nonmotile (with paralyzed flagella) <i>Escherichia coli</i> K12 MG1655 Δ<i>motA</i> that is incapable of encoding the motor torque generator for flagellar movement. Of the three strains, <i>S. wittichii</i> RW1 is highly hydrophobic, while <i>E. coli</i> strains are equally hydrophilic. Consideration of the hydrophobicity provides an alternative explanation for the bacterial adhesion behavior. QCM-D results show that motility is a critical factor in determining bacterial adhesion, as long as the aquatic chemical conditions are conducive for motility and the substratum and bacterial surface are similarly hydrophobic or hydrophilic. Once their properties are not similar, the contribution of hydrophobic interactions becomes more pronounced. QCM-D results suggest that during adhesion of the hydrophobic bacterium, <i>S. wittichii</i> RW1, the initial step of adhesion and maturation of bacteria–substratum interaction on hydrophilic surface includes a dynamic change of the viscoelastic properties of the bond bacterium-surface becoming more viscously oriented

    Extracellular Polymeric Substances (EPS) in a Hybrid Growth Membrane Bioreactor (HG-MBR): Viscoelastic and Adherence Characteristics

    No full text
    Extracellular polymeric substances (EPS) comprising the microbial biofilms in membrane bioreactor (MBR) systems are considered the most significant factor affecting sludge viscoelastic properties as well as membrane fouling. Understanding the water chemistry effects on EPS viscoelastic, conformational, and adherence properties are critical for defining the microbial biofilm’s propensity of fouling the membrane surface. In this study, EPS extracted from a hybrid growth membrane bioreactor (HG-MBR) were analyzed for their adherence, viscoelastic properties and size distribution using quartz crystal microbalance with dissipation monitoring (QCM-D) and dynamic light scattering (DLS), respectively. Also, adsorption characteristics of EPS extracted from different locations in the HG-MBR (bioreactor liquor, fluidized carriers, and membrane surface) were defined and linked to the extent of the total polysaccharide content in the EPS. In accordance with the Derjaguin−Landau−Verwey−Overbeek (DLVO) theory, more EPS were adsorbed at higher ionic strength, lower pH and in the presence of calcium cations. Based on the QCM-D results, the calculated thickness of the EPS adsorbed layer was increased at lower ionic strength, higher pH, and only had a minor increase in the presence of calcium cations. The calculated shear modules and shear viscosity suggest that at lower pH and in the presence of calcium, EPS becomes more viscous and elastic, respectively. DLS analysis correlated to the QCM-D results: A decrease in the hydrodynamic radius of the EPS colloids was observed at lower pH, and in the presence of calcium, most likely attributed to intermolecular attraction forces. Based on this study, low pH and presence of calcium may induce flocs’ stability that resist erosion in the MBRs, while on the other hand, these conditions may induce the formation of an elastic and viscous EPS layer fouling the ultrafiltration (UF) membrane

    Pseudomonas aeruginosa Attachment on QCM-D Sensors: The Role of Cell and Surface Hydrophobicities

    No full text
    While biofilms are ubiquitous in nature, the mechanism by which they form is still poorly understood. This study investigated the process by which bacteria deposit and, shortly after, attach irreversibly to surfaces by reorienting to create a stronger interaction, which leads to biofilm formation. A model for attachment of Pseudomonas aeruginosa was developed using a quartz crystal microbalance with dissipation monitoring (QCM-D) technology, along with a fluorescent microscope and camera to monitor kinetics of adherence of the cells over time. In this model, the interaction differs depending on the force that dominates between the viscous, inertial, and elastic loads. P. aeruginosa, grown to the midexponential growth phase (hydrophilic) and stationary phase (hydrophobic) and two different surfaces, silica (SiO<sub>2</sub>) and polyvinylidene fluoride (PVDF), which are hydrophilic and hydrophobic, respectively, were used to test the model. The bacteria deposited on both of the sensor surfaces, though on the silica surface the cells reached a steady state where there was no net increase in deposition of bacteria, while the quantity of cells depositing on the PVDF surface continued to increase until the end of the experiments. The change in frequency and dissipation per cell were both positive for each overtone (<i>n</i>), except when the cells and surface are both hydrophilic. In the model three factors, specifically, viscous, inertial, and elastic loads, contribute to the change in frequency and dissipation at each overtone when a cell deposits on a sensor. On the basis of the model, hydrophobic cells were shown to form an elastic connection to either surface, with an increase of elasticity at higher overtones. At lower overtones, hydrophilic cells depositing on the hydrophobic surface were shown to also be elastic, but as the overtone increases the connection between the cells and sensor becomes more viscoelastic. In the case of hydrophilic cells interacting with the hydrophilic surface, the connection is viscous at each overtone measured. It could be inferred that the transformation of the viscoelasticity of the cell–surface connection is due to changes in the orientation of the cells to the surface, which allow the bacteria to attach irreversibly and begin biofilm formation
    corecore