22 research outputs found

    Effect of various temperatures on the nutritional compositions of fermented African locust bean (Parkia biglobosa) seed

    Get PDF
    The effect of temperature on the nutritional values of fermented African locust bean (Parkia biglobosa) seed were studied. Temperatures ranging between 40 to 70⁰ C were used for the fermentation. Biochemical and physiological analysis were evaluated. Highest nutritional values were obtained with samples fermented at lower temperatures (40 and 50⁰ C) and they all had acceptable end products while all the samples fermented with higher temperature (60 and 70⁰ C) gave poor nutritional values with unacceptable end products. Bacillus subtilis was used as starter culture and fermentation was carried out for 5 days (120 hours). An increase in moisture, protein, crude fat contents and decrease in total carbohydrate and crude fibre were noticed for all the fermentation temperature variation. The Organic functional groups were identified and characterized using Fourier Transform Infrared (FTIR) spectroscopy. The effect of temperature on the morphological structure of fermented sample

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance.

    Get PDF
    Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern-particularly Alpha, Beta, Delta, and Omicron-on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Impact of Difluoromethylornithine and AMXT 1501 on Gene Expression and Capsule Regulation in <i>Streptococcus pneumoniae</i>

    No full text
    Streptococcus pneumoniae (Spn), a Gram-positive bacterium, poses a significant threat to human health, causing mild respiratory infections to severe invasive conditions. Despite the availability of vaccines, challenges persist due to serotype replacement and antibiotic resistance, emphasizing the need for alternative therapeutic strategies. This study explores the intriguing role of polyamines, ubiquitous, small organic cations, in modulating virulence factors, especially the capsule, a crucial determinant of Spn’s pathogenicity. Using chemical inhibitors, difluoromethylornithine (DFMO) and AMXT 1501, this research unveils distinct regulatory effects on the gene expression of the Spn D39 serotype in response to altered polyamine homeostasis. DFMO inhibits polyamine biosynthesis, disrupting pathways associated with glucose import and the interconversion of sugars. In contrast, AMXT 1501, targeting polyamine transport, enhances the expression of polyamine and glucose biosynthesis genes, presenting a novel avenue for regulating the capsule independent of glucose availability. Despite ample glucose availability, AMXT 1501 treatment downregulates the glycolytic pathway, fatty acid synthesis, and ATP synthase, crucial for energy production, while upregulating two-component systems responsible for stress management. This suggests a potential shutdown of energy production and capsule biosynthesis, redirecting resources towards stress management. Following DFMO and AMXT 1501 treatments, countermeasures, such as upregulation of stress response genes and ribosomal protein, were observed but appear to be insufficient to overcome the deleterious effects on capsule production. This study highlights the complexity of polyamine-mediated regulation in S. pneumoniae, particularly capsule biosynthesis. Our findings offer valuable insights into potential therapeutic targets for modulating capsules in a polyamine-dependent manner, a promising avenue for intervention against S. pneumoniae infections

    Preharvest Environmental and Management Drivers of Multidrug Resistance in Major Bacterial Zoonotic Pathogens in Pastured Poultry Flocks

    No full text
    Due to nutritional benefits and perceived humane ways of treating the animals, the demand for antibiotic-free pastured poultry chicken has continued to be on a steady rise. However, despite non-usage of antibiotics in pastured poultry broiler production, antibiotic resistance (AR) is reported in zoonotic poultry pathogens. However, actors that drive multidrug resistance (MDR) in pastured poultry are not known. In this study, we used machine learning and deep learning approaches to predict farm management practices, and physicochemical properties of feces and soil that drive MDR in zoonotic poultry pathogens. Antibiotic use in agroecosystems is known to contribute to resistance. Evaluation of the development of resistance in environments that are free of antibiotics such as the all-natural antibiotic-free, pastured poultry production systems described here is critical to understand the background AR. We analyzed 1,635 preharvest (feces and soil) samples collected from forty-two pastured poultry flocks and eleven farms in the Southeastern United States. CDC National Antimicrobial Resistance Monitoring System guidelines were used to determine antimicrobial/multidrug resistance profiles of Salmonella, Listeria and Campylobacter. A combination of two traditional machine learning (RandomForest and XGBoost) and three deep learning (Multi-layer Perceptron, Generative Adversarial Network, and Auto-Encoder) approaches, identified critical farm/environmental variables that drive multidrug resistance in poultry pathogens, in broiler production systems that represents background resistance. This study enumerates management practices that contribute to AR and recommendations to potentially mitigate multidrug resistance and prevalence of Salmonella and Listeria in pastured poultry.</jats:p

    Predicting Foodborne Pathogens and Probiotics Taxa within Poultry-Related Microbiomes Using a Machine Learning Approach

    No full text
    Abstract Background Microbiomes that can serve as an indicator of gut, intestinal, and general health of humans and animals are largely influenced by food consumed and contaminant bioagents. Microbiome studies usually focus on estimating the alpha (within sample) and beta (similarity/dissimilarity among samples) diversities. This study took a combinatorial approach and applied machine learning to microbiome data to predict the presence of disease-causing pathogens and their association with known/potential probiotic taxa. Here, 16S rRNA gene high-throughput Illumina sequencing of temporal pre-harvest (feces, soil) samples of 41 pastured poultry flocks from southeastern U.S. farms were used to generate the relative abundance of operational taxonomic units (OTUs) as machine learning input. Unique genera from the OTUs were used as predictors of the prevalence of foodborne pathogens (Salmonella, Campylobacter, and Listeria) at different stages of poultry growth (START (2–4 weeks old), MID (5–7 weeks old), END (8–11 weeks old)), association with farm management practices and physicochemical properties. Result While we did not see any significant associations between known probiotics and Salmonella or Listeria, we observed significant negative correlations between known probiotics (Bacillus and Clostridium) and Campylobacter at mid-timepoint of sample collection. Our data indicates a negative correlation between potential probiotics and Campylobacter at both early and end-timepoint of sample collection. Furthermore, our model prediction shows that changes in farm operations such as how often the houses are moved on pasture, age at which chickens are introduced to the pasture, diet composition, presence of other animals on the farm could favorably increase the abundance and activity of probiotics that could reduce Campylobacter prevalence. Conclusion Integration of microbiome data with farm management practices using machine learning provided insights on how to reduce Campylobacter prevalence and transmission along the farm-to-fork continuum. Altering management practices to support proliferation of beneficial probiotics to reduce pathogen prevalence identified here could constitute a complementary method to the existing but ineffective interventions such as vaccination and bacteriophage cocktails usage. Study findings also corroborate the presence of bacterial genera such as Caloramator, DA101, Parabacteroides, Faecalibacterium as potential probiotics.</jats:p

    Preharvest Environmental and Management Drivers of Multidrug Resistance in Major Bacterial Zoonotic Pathogens in Pastured Poultry Flocks

    No full text
    Due to nutritional benefits and perceived humane ways of treating the animals, the demand for antibiotic-free pastured poultry chicken has continued to be steadily rise. Despite the non-usage of antibiotics in pastured poultry broiler production, antibiotic resistance (AR) is reported in zoonotic poultry pathogens. However, factors that drive multidrug resistance (MDR) in pastured poultry are not well understood. In this study, we used machine learning and deep learning approaches to predict farm management practices and physicochemical properties of feces and soil that drive MDR in zoonotic poultry pathogens. Antibiotic use in agroecosystems is known to contribute to resistance. Evaluation of the development of resistance in environments that are free of antibiotics such as the all-natural, antibiotic-free, pastured poultry production systems described here is critical to understand the background AR in the absence of any selection pressure, i.e., basal levels of resistance. We analyzed 1635 preharvest (feces and soil) samples collected from forty-two pastured poultry flocks and eleven farms in the Southeastern United States. CDC National Antimicrobial Resistance Monitoring System guidelines were used to determine antimicrobial/multidrug resistance profiles of Salmonella, Listeria, and Campylobacter. A combination of two traditional machine learning (RandomForest and XGBoost) and three deep learning (Multi-layer Perceptron, Generative Adversarial Network, and Auto-Encoder) approaches identified critical farm management practices and environmental variables that drive multidrug resistance in poultry pathogens in broiler production systems that represents background resistance. This study enumerates management practices that contribute to AR and makes recommendations to potentially mitigate multidrug resistance and the prevalence of Salmonella and Listeria in pastured poultry

    Characterization of an Arginine Decarboxylase from Streptococcus pneumoniae by Ultrahigh-Performance Liquid Chromatography&ndash;Tandem Mass Spectrometry

    No full text
    Polyamines are polycations derived from amino acids that play an important role in proliferation and growth in almost all living cells. In Streptococcus pneumoniae (the pneumococcus), modulation of polyamine metabolism not only plays an important regulatory role in central metabolism, but also impacts virulence factors such as the capsule and stress responses that affect survival in the host. However, functional annotation of enzymes from the polyamine biosynthesis pathways in the pneumococcus is based predominantly on computational prediction. In this study, we cloned SP_0166, predicted to be a pyridoxal-dependent decarboxylase, from the Orn/Lys/Arg family pathway in S. pneumoniae TIGR4 and expressed and purified the recombinant protein. We performed biochemical characterization of the recombinant SP_0166 and confirmed the substrate specificity. For polyamine analysis, we developed a simultaneous quantitative method using hydrophilic interaction liquid chromatography (HILIC)-based liquid chromatography&ndash;tandem mass spectrometry (LC&ndash;MS/MS) without derivatization. SP_0166 has apparent Km, kcat, and kcat/Km values of 11.3 mM, 715,053 min&minus;1, and 63,218 min&minus;1 mM&minus;1, respectively, with arginine as a substrate at pH 7.5. We carried out inhibition studies of SP_0166 enzymatic activity with arginine as a substrate using chemical inhibitors DFMO and DFMA. DFMO is an irreversible inhibitor of ornithine decarboxylase activity, while DFMA inhibits arginine decarboxylase activity. Our findings confirm that SP_0166 is inhibited by DFMA and DFMO, impacting agmatine production. The use of arginine as a substrate revealed that the synthesis of putrescine by agmatinase and N-carbamoylputrescine by agmatine deiminase were both affected and inhibited by DFMA. This study provides experimental validation that SP_0166 is an arginine decarboxylase in pneumococci

    Polyamine Transport Is Required for Stress Responses and Capsule Production in Streptococcus Pneumoniae

    No full text
    Abstract Infections due to Streptococcus pneumoniae, a commensal in the nasopharynx, still claim a significant number of lives worldwide. Genetic plasticity, antibiotic resistance, limited serotype coverage of the available polysaccharide-based conjugate vaccines confounds therapeutic interventions. Pathogenic systems that allow successful adaption and persistence in the host could be potential innovative targets for mediations. Polyamines are ubiquitous polycationic molecules and regulate many cellular processes. We previously reported that deletion of potABCD, an operon that encodes a putrescine/spermidine transporter (∆potABCD), resulted in an un-encapsulated attenuated phenotype. Here we characterize the transcriptome, metabolome, and stress responses of S. pneumoniae that is dependent on the polyamine transporter. Expression of genes involved in oxidative stress responses and the central metabolism was reduced while that of genes involved in the Leloir, tagatose, and pentose phosphate pathways was increased in ΔpotABCD. Downregulation of genes of the central metabolism will reduce production of precursors of capsule polysaccharides. Metabolomics results show reduced glutathione and pyruvate levels in the mutant. We also show that the potABCD operon protects pneumococci against hydrogen peroxide and nitrosative stress. These results show the importance of the potABCD operon and polyamine transport in pneumococcal physiology and fitness that represents a novel target for therapeutic interventions.</jats:p
    corecore