240 research outputs found

    Shenfun -- automating the spectral Galerkin method

    Full text link
    With the shenfun Python module (github.com/spectralDNS/shenfun) an effort is made towards automating the implementation of the spectral Galerkin method for simple tensor product domains, consisting of (currently) one non-periodic and any number of periodic directions. The user interface to shenfun is intentionally made very similar to FEniCS (fenicsproject.org). Partial Differential Equations are represented through weak variational forms and solved using efficient direct solvers where available. MPI decomposition is achieved through the {mpi4py-fft} module (bitbucket.org/mpi4py/mpi4py-fft), and all developed solver may, with no additional effort, be run on supercomputers using thousands of processors. Complete solvers are shown for the linear Poisson and biharmonic problems, as well as the nonlinear and time-dependent Ginzburg-Landau equation.Comment: Presented at MekIT'17, the 9th National Conference on Computational Mechanic

    High performance Python for direct numerical simulations of turbulent flows

    Full text link
    Direct Numerical Simulations (DNS) of the Navier Stokes equations is an invaluable research tool in fluid dynamics. Still, there are few publicly available research codes and, due to the heavy number crunching implied, available codes are usually written in low-level languages such as C/C++ or Fortran. In this paper we describe a pure scientific Python pseudo-spectral DNS code that nearly matches the performance of C++ for thousands of processors and billions of unknowns. We also describe a version optimized through Cython, that is found to match the speed of C++. The solvers are written from scratch in Python, both the mesh, the MPI domain decomposition, and the temporal integrators. The solvers have been verified and benchmarked on the Shaheen supercomputer at the KAUST supercomputing laboratory, and we are able to show very good scaling up to several thousand cores. A very important part of the implementation is the mesh decomposition (we implement both slab and pencil decompositions) and 3D parallel Fast Fourier Transforms (FFT). The mesh decomposition and FFT routines have been implemented in Python using serial FFT routines (either NumPy, pyFFTW or any other serial FFT module), NumPy array manipulations and with MPI communications handled by MPI for Python (mpi4py). We show how we are able to execute a 3D parallel FFT in Python for a slab mesh decomposition using 4 lines of compact Python code, for which the parallel performance on Shaheen is found to be slightly better than similar routines provided through the FFTW library. For a pencil mesh decomposition 7 lines of code is required to execute a transform

    On the Singular Neumann Problem in Linear Elasticity

    Full text link
    The Neumann problem of linear elasticity is singular with a kernel formed by the rigid motions of the body. There are several tricks that are commonly used to obtain a non-singular linear system. However, they often cause reduced accuracy or lead to poor convergence of the iterative solvers. In this paper, different well-posed formulations of the problem are studied through discretization by the finite element method, and preconditioning strategies based on operator preconditioning are discussed. For each formulation we derive preconditioners that are independent of the discretization parameter. Preconditioners that are robust with respect to the first Lam\'e constant are constructed for the pure displacement formulations, while a preconditioner that is robust in both Lam\'e constants is constructed for the mixed formulation. It is shown that, for convergence in the first Sobolev norm, it is crucial to respect the orthogonality constraint derived from the continuous problem. Based on this observation a modification to the conjugate gradient method is proposed that achieves optimal error convergence of the computed solution

    More efficient time integration for Fourier pseudo-spectral DNS of incompressible turbulence

    Full text link
    Time integration of Fourier pseudo-spectral DNS is usually performed using the classical fourth-order accurate Runge--Kutta method, or other methods of second or third order, with a fixed step size. We investigate the use of higher-order Runge-Kutta pairs and automatic step size control based on local error estimation. We find that the fifth-order accurate Runge--Kutta pair of Bogacki \& Shampine gives much greater accuracy at a significantly reduced computational cost. Specifically, we demonstrate speedups of 2x-10x for the same accuracy. Numerical tests (including the Taylor-Green vortex, Rayleigh-Taylor instability, and homogeneous isotropic turbulence) confirm the reliability and efficiency of the method. We also show that adaptive time stepping provides a significant computational advantage for some problems (like the development of a Rayleigh-Taylor instability) without compromising accuracy
    • …
    corecore