27 research outputs found
Level and Magnitudes of Shade Deviation and Subsequent Environmental Challenges of Turquoise Colorants
Reactive dyes for turquoise hue have definite properties of larger structure results shade deviation between batches in knit fabric dyeing. Dyeing technique of turquoise color as well as comprehensive analysis on deviations on shade and physico-chemical properties concerning batches of dyed knitted fabric with respective utility consumption has been investigated in this research. To obtain the level and magnitudes of deviation, three batches of cotton knitted fabric dyed with turquoise color having same recipe as well as same condition were examined. Ailment of shade on different stage of knit dyeing with turquoise color also reported. Process chemicals, parameters, process flow and visual analysis on light box as well as spectrophotometer analysis of all three samples was supplemented. In addition, physical and chemical test of sample dyed fabric such as color fastness to wash, color fastness to rubbing was tested under the ISO 3, ISO 105 E04, and ISO- 105-AO3 method respectively. Besides color strength as well as utility and time consumption of each batch have an inclusive investigation. After widespread analysis of the samples a considerable shade deviation has been testified which lead to reprocessing. As a result, production rate becomes lower, fabrics damage, production cost, chemicals and water consumption become higher, which upshots ruthless impact on environment through higher pollutants generation
Dynamic Mechanical Behavior & Analysis of the Jute-Glass Fiber Reinforced Polyester Hybrid Composites
The development of composite materials based on the reinforcement of two or more fiber types in a matrix leads to the production of hybrid composites. In the present work, hessian jute cloth, non-woven E-glass and polyester resin were used to prepare jute/polyester, glass/polyester and jute-glass hybrid polyester composites by hand lay-up and heat press molding techniques and their mechanical properties were evaluated for different stacking sequences. In Jute/polyester and glass/polyester composites, mechanical properties such as tensile properties, bending properties and impact strength increase with the increases of stacking sequences. In case of jute-glass hybrid composites, the composites which content more glass layer than that of jute layer shows the higher mechanical properties. Water uptake (%) of these composites demonstrate that water absorption rate is initially higher for jute/polyester composite and at a stage it become steady (31.11%), but in case of glass/polyester and jute-glass hybrid composites the absorption rate is very low which is almost less than 1% due to the hydrophobic nature of glass fiber and polyester resin. Soil degradation test of all types of composites were evaluated and the deterioration of the mechanical properties revealed for all the composites where jute/polyester composites showed the higher degree but E-glass/polyester composites retained major portion of its original integrity and their hybrid declined more than glass but less than jute composites. The composites were also radiated under gamma radiation (50 kCi Cobalt 60 Source) of various doses (1-12.5 kGy). It was found that by using gamma radiation, the mechanical properties of the composites were improved
An Instigation to Green Manufacturing: Characterization and Analytical Analysis of Textile Wastewater for Physico-Chemical and Organic Pollution Indicators
Severe environmental pollutions are contributed by textiles at an alarming rate. Proper treatment of wastewater before discharge is mandatory for maintain our ecological balance. Pollution levels of textile effluent has been investigated and analyzed in this research. Effluent samples from different areas of textile processing industries in Bangladesh were collected and analyzed. A total forty sample were studied and characterized their result ranged are temperature, pH, Total Dissolved Solid (TDS), Dissolved Oxygen (DO), Chemical Oxygen Demand (COD) and Biological oxygen demand (BOD5). Standard sample collection procedures was followed to collect samples of six months and analyzed immediately temperature, pH TDS by pocket size Thermometer, pH and TDS meter. To sum up, textile effluent contains high Temperature, pH, TDS, COD and lower DO which threatens aquatic lives live. It has been acclaimed that, it is quite unsafe for this discharge into water body to continue. The ecological and human health safety of continual discharge of this textile effluents into surface water are undoubtedly under threat
Localized Surface Plasmon Resonance Property of Ag-Nanoparticles and Prospects as Imminent Multi-Functional Colorant
1. Hauser PJ, Tabba AH. Improving the environmental and economic aspects of cotton dyeing using a cationised cotton†. Coloration Technology. 2001, 117:282-2882. Lewis DM, Lei X. Improved cellulose dyeability by chemical modification of the fiber. Textile Chemist Colorist. 1989, 213. Şen S, Demirer G. Anaerobic treatment of real textile wastewater with a fluidized bed reactor. Water Research. 2003, 37:1868-18784. Mittal A, Kaur D, Malviya A, Mittal J, Gupta V. Adsorption studies on the removal of coloring agent phenol red from wastewater using waste materials as adsorbents. Journal of Colloid and Interface Science. 2009, 337:345-3545. Knapp J, Newby P. The decolourisation of a chemical industry effluent by white rot fungi. Water Research. 1999, 33:575-5776. Cavaco SA, Fernandes S, Quina MM, Ferreira LM. Removal of chromium from electroplating industry effluents by ion exchange resins. Journal of Hazardous Materials. 2007, 144:634-6387. Li X-q, Brown DG, Zhang W-x. Stabilization of biosolids with nanoscale zero-valent iron (nzvi). Journal of nanoparticle research. 2007, 9:233-2438. Gupta V, Agarwal S, Saleh TA. Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes. Water research. 2011, 45:2207-22129. Noroozi B, Arami M, Bahrami S. Investigation on the capability of silkworm pupa as a natural adsorbent for removal of dyes from textile effluent. Iranian Journal of chemical engineering. 2004, 110. Yilmaz AE, Boncukcuoğlu R, Kocakerim M, Karakaş İH. Waste utilization: The removal of textile dye (bomaplex red cr-l) from aqueous solution on sludge waste from electrocoagulation as adsorbent. Desalination. 2011, 277:156-16311. Verschuren J, Van Herzele P, De Clerck K, Kiekens P. Influence of fiber surface purity on wicking properties of needle-punched nonwoven after oxygen plasma treatment. Textile research journal. 2005, 75:437-44112. Khatri Z, Memon MH, Khatri A, Tanwari A. Cold pad-batch dyeing method for cotton fabric dyeing with reactive dyes using ultrasonic energy. Ultrasonics sonochemistry. 2011, 18:1301-130713. Bhat N, Netravali A, Gore A, Sathianarayanan M, Arolkar G, Deshmukh R. Surface modification of cotton fabrics using plasma technology. Textile Research Journal. 2011:004051751039757414. Wang B, Li L, Zheng Y. In vitro cytotoxicity and hemocompatibility studies of ti-nb, ti-nb-zr and ti-nb-hf biomedical shape memory alloys. Biomedical Materials. 2010, 5:04410215. Ahmed NS, El-Shishtawy RM. The use of new technologies in coloration of textile fibers. Journal of Materials Science. 2010, 45:1143-115316. Kleinman SL, Ringe E, Valley N, Wustholz KL, Phillips E, Scheidt KA, Schatz GC, Van Duyne RP. Single-molecule surface-enhanced raman spectroscopy of crystal violet isotopologues: Theory and experiment. Journal of the American Chemical Society. 2011, 133:4115-412217. Aslan K, Wu M, Lakowicz JR, Geddes CD. Fluorescent core-shell ag@ sio2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms. Journal of the American Chemical Society. 2007, 129:1524-152518. Zhao J, Zhang X, Yonzon CR, Haes AJ, Van Duyne RP. Localized surface plasmon resonance biosensors. Nanomedicine. 2006, 1:219-22819. Sepúlveda B, Angelomé PC, Lechuga LM, Liz-Marzán LM. Lspr-based nanobiosensors. Nano Today. 2009, 4:244-25120. Pyayt AL, Wiley B, Xia Y, Chen A, Dalton L. Integration of photonic and silver nanowire plasmonic waveguides. Nature nanotechnology. 2008, 3:660-66521. Rang M, Jones AC, Zhou F, Li Z-Y, Wiley BJ, Xia Y, Raschke MB. Optical near-field mapping of plasmonic nanoprisms. Nano letters. 2008, 8:3357-336322. Asharani P, Wu YL, Gong Z, Valiyaveettil S. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology. 2008, 19:25510223. Božanić D, Djoković V, Blanuša J, Nair P, Georges M, Radhakrishnan T. Preparation and properties of nano-sized ag and ag2s particles in biopolymer matrix. The European Physical Journal E. 2007, 22:51-5924. Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. The Journal of Physical Chemistry B. 2003, 107:668-67725. Sherry LJ, Chang S-H, Schatz GC, Van Duyne RP, Wiley BJ, Xia Y. Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano letters. 2005, 5:2034-203826. Haynes CL, Van Duyne RP. Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics. The Journal of Physical Chemistry B. 2001, 105:5599-561127. Link S, Wang ZL, El-Sayed M. Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition. The Journal of Physical Chemistry B. 1999, 103:3529-353328. Mock JJ, Smith DR, Schultz S. Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Letters. 2003, 3:485-49129. Hu M, Chen J, Marquez M, Xia Y, Hartland GV. Correlated rayleigh scattering spectroscopy and scanning electron microscopy studies of au-ag bimetallic nanoboxes and nanocages. The Journal of Physical Chemistry C. 2007, 111:12558-1256530. Zhao L, Kelly KL, Schatz GC. The extinction spectra of silver nanoparticle arrays: Influence of array structure on plasmon resonance wavelength and width. The Journal of Physical Chemistry B. 2003, 107:7343-735031. Shih C-M, Shieh Y-T, Twu Y-K. Preparation of gold nanopowders and nanoparticles using chitosan suspensions. Carbohydrate Polymers. 2009, 78:309-31532. Sun C, Qu R, Chen H, Ji C, Wang C, Sun Y, Wang B. Degradation behavior of chitosan chains in the ‘green’synthesis of gold nanoparticles. Carbohydrate research. 2008, 343:2595-259933. Miyama T, Yonezawa Y. Photoinduced formation and aggregation of silver nanoparticles at the surface of carboxymethylcellulose films. Journal of Nanoparticle Research. 2004, 6:457-46534. Salata OV. Applications of nanoparticles in biology and medicine. Journal of nanobiotechnology. 2004, 2:135. Barber D, Freestone I. An investigation of the origin of the colour of the lycurgus cup by analytical transmission electron microscopy. Archaeometry. 1990, 32:33-4536. Katayama S, Zhao L, Yonezawa S, Iwai Y. Modification of the surface of cotton with supercritical carbon dioxide and water to support nanoparticles. The Journal of Supercritical Fluids. 2012, 61:199-20537. Cristea D, Vilarem G. Improving light fastness of natural dyes on cotton yarn. Dyes and pigments. 2006, 70:238-24538. Oda H. Improving light fastness of natural dye: Photostabilisation of gardenia blue. Coloration technology. 2012, 128:68-7339. Shahid M, Mohammad F. Green chemistry approaches to develop antimicrobial textiles based on sustainable biopolymers a review. Industrial Engineering Chemistry Research. 2013, 52:5245-526040. Iravani S, Korbekandi H, Mirmohammadi S, Zolfaghari B. Synthesis of silver nanoparticles: Chemical, physical and biological methods. Research in pharmaceutical sciences. 2014, 9:38541. Prabhu S, Poulose EK. Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. International Nano Letters. 2012, 2:1-1042. Eckhardt S, Brunetto PS, Gagnon J, Priebe M, Giese B, Fromm KM. Nanobio silver: Its interactions with peptides and bacteria, and its uses in medicine. Chemical reviews. 2013, 113:4708-475443. Durán N, Durán M, de Jesus MB, Seabra AB, Fávaro WJ, Nakazato G. Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomedicine: Nanotechnology, Biology and Medicine. 2016, 12:789-79944. Goia DV, Matijević E. Preparation of monodispersed metal particles. New Journal of Chemistry. 1998, 22:1203-121545. Adair J, Li T, Kido T, Havey K, Moon J, Mecholsky J, Morrone A, Talham D, Ludwig M, Wang L. Recent developments in the preparation and properties of nanometer-size spherical and platelet-shaped particles and composite particles. Materials Science and Engineering: R: Reports. 1998, 23:139-24246. Adair JH, Suvaci E. Morphological control of particles. Current opinion in colloid interface science. 2000, 5:160-16747. Mayer AB, Hausner SH, Mark JE. Colloidal silver nanoparticles generated in the presence of protective cationic polyelectrolytes. Polymer journal. 2000, 32:15-2248. Chou K-S, Ren C-Y. Synthesis of nanosized silver particles by chemical reduction method. Materials Chemistry and Physics. 2000, 64:241-24649. Hachisu S. Phase transition in monodisperse gold sol. Microscopic observation of gas, liquid and solid states. Croatica chemica acta. 1998, 71:975-98150. Taleb A, Petit C, Pileni M. Synthesis of highly monodisperse silver nanoparticles from aot reverse micelles: A way to 2d and 3d self-organization. Chemistry of Materials. 1997, 9:950-95951. Egorova E, Revina A. Synthesis of metallic nanoparticles in reverse micelles in the presence of quercetin. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2000, 168:87-9652. Rodriguez-Sanchez L, Blanco M, Lopez-Quintela M. Electrochemical synthesis of silver nanoparticles. The Journal of Physical Chemistry B. 2000, 104:9683-968853. Zhu J, Liu S, Palchik O, Koltypin Y, Gedanken A. Shape-controlled synthesis of silver nanoparticles by pulse sonoelectrochemical methods. Langmuir. 2000, 16:6396-639954. Matijevic E. Preparation and properties of uniform size colloids. Chemistry of materials. 1993, 5:412-42655. Matijevic E. Uniform inorganic colloid dispersions. Achievements and challenges. langmuir. 1994, 10:8-1656. Mulvaney P, Giersig M, Henglein A. Electrochemistry of multilayer colloids: Preparation and absorption spectrum of gold-coated silver particles. The Journal of Physical Chemistry. 1993, 97:7061-706457. Torigoe K, Nakajima Y, Esumi K. Preparation and characterization of colloidal silver-platinum alloys. The Journal of Physical Chemistry. 1993, 97:8304-830958. Link S, El-Sayed MA. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. The Journal of Physical Chemistry B. 1999, 103:8410-842659. Lee J-W, Park S-B, Lee H. Densities, surface tensions, and refractive indices of the water+ 1, 3-propanediol system. Journal of Chemical Engineering Data. 2000, 45:166-16860. Henglein A, Giersig M. Formation of colloidal silver nanoparticles: Capping action of citrate. The Journal of Physical Chemistry B. 1999, 103:9533-953961. Wang W, Efrima S, Regev O. Directing oleate stabilized nanosized silver colloids into organic phases. Langmuir. 1998, 14:602-61062. Bright RM, Musick MD, Natan MJ. Preparation and characterization of ag colloid monolayers. Langmuir. 1998, 14:5695-570163. Liz-Marzán LM, Lado-Tourino I. Reduction and stabilization of silver nanoparticles in ethanol by nonionic surfactants. Langmuir. 1996, 12:3585-358964. Abdel-Mohsen A, Hrdina R, Burgert L, Krylová G, Abdel-Rahman RM, Krejčová A, Steinhart M, Beneš L. Green synthesis of hyaluronan fibers with silver nanoparticles. Carbohydrate polymers. 2012, 89:411-42265. Abdel-Mohsen A, Abdel-Rahman RM, Fouda MM, Vojtova L, Uhrova L, Hassan A, Al-Deyab SS, El-Shamy IE, Jancar J. Preparation, characterization and cytotoxicity of schizophyllan/silver nanoparticle composite. Carbohydrate polymers. 2014, 102:238-24566. Bois L, Chassagneux F, Parola S, Bessueille F, Battie Y, Destouches N, Boukenter A, Moncoffre N, Toulhoat N. Growth of ordered silver nanoparticles in silica film mesostructured with a triblock copolymer peo–ppo–peo. Journal of Solid State Chemistry. 2009, 182:1700-170767. Gopinath V, MubarakAli D, Priyadarshini S, Priyadharsshini NM, Thajuddin N, Velusamy P. Biosynthesis of silver nanoparticles from tribulus terrestris and its antimicrobial activity: A novel biological approach. Colloids and Surfaces B: Biointerfaces. 2012, 96:69-7468. Bar H, Bhui DK, Sahoo GP, Sarkar P, Pyne S, Misra A. Green synthesis of silver nanoparticles using seed extract of jatropha curcas. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2009, 348:212-21669. Hebeish A, El-Rafie M, Abdel-Mohdy F, Abdel-Halim E, Emam HE. Carboxymethyl cellulose for green synthesis and stabilization of silver nanoparticles. Carbohydrate Polymers. 2010, 82:933-94170. Emam HE, Manian AP, Široká B, Duelli H, Redl B, Pipal A, Bechtold T. Treatments to impart antimicrobial activity to clothing and household cellulosic-textiles–why “nano”-silver? Journal of Cleaner Production. 2013, 39:17-2371. Notriawan D, Angasa E, Suharto TE, Hendri J, Nishina Y. Green synthesis of silver nanoparticles using aqueous rinds extract of brucea javanica (l.) merr at ambient temperature. Materials Letters. 2013, 97:181-18372. Tang B, Wang J, Xu S, Afrin T, Xu W, Sun L, Wang X. Application of anisotropic silver nanoparticles: Multifunctionalization of wool fabric. Journal of colloid and interface science. 2011, 356:513-51873. Deivaraj T, Lala NL, Lee JY. Solvent-induced shape evolution of pvp protected spherical silver nanoparticles into triangular nanoplates and nanorods. Journal of colloid and interface science. 2005, 289:402-40974. Si G, Shi W, Li K, Ma Z. Synthesis of pss-capped triangular silver nanoplates with tunable spr. Colloids and Surfaces A Physicochemical and Engineering Aspects. 2011, 38075. Jia H, Zeng J, An J, Song W, Xu W, Zhao B. Preparation of triangular and hexagonal silver nanoplates on the surface of quartz substrate. Thin Solid Films. 2008, 516:5004-500976. Samanta S, Sarkar P, Pyne S, Sahoo GP, Misra A. Synthesis of silver nanodiscs and triangular nanoplates in pvp matrix: Photophysical study and simulation of uv–vis extinction spectra using dda method. Journal of Molecular Liquids. 2012, 165:21-2677. González A, Noguez C, Beránek J, Barnard A. Size, shape, stability, and color of plasmonic silver nanoparticles. The Journal of Physical Chemistry C. 2014, 118:9128-913678. Hebeish A, El-Naggar M, Fouda MM, Ramadan M, Al-Deyab SS, El-Rafie M. Highly effective antibacterial textiles containing green synthesized silver nanoparticles. Carbohydrate Polymers. 2011, 86:936-94079. Ki HY, Kim JH, Kwon SC, Jeong SH. A study on multifunctional wool textiles treated with nano-sized silver. Journal of Materials Science. 2007, 42:8020-802480. Mohammad F. High-energy radiation induced sustainable coloration and functional finishing of textile materials. Industrial Engineering Chemistry Research. 2015, 54:3727-374581. Samal SS, Jeyaraman P, Vishwakarma V. Sonochemical coating of ag-tio2 nanoparticles on textile fabrics for stain repellency and self-cleaning-the indian scenario: A review. Journal of Minerals and Materials Characterization and Engineering. 2010, 9:51982. Chattopadhyay D, Patel B. Improvement in physical and dyeing properties of natural fibres through pre-treatment with silver nanoparticles. Indian journal of fibre textile research. 2009, 34:36883. Tang B, Zhang M, Hou X, Li J, Sun L, Wang X. Coloration of cotton fibers with anisotropic silver nanoparticles. Industrial engineering chemistry research. 2012, 51:12807-1281384. Wu M, Ma B, Pan T, Chen S, Sun J. Silver‐nanoparticle‐colored cotton fabrics with tunable colors and durable antibacterial and self‐healing superhydrophobic properties. Advanced Functional Materials. 2016, 26:569-57685. Emam HE, Saleh N, Nagy KS, Zahran M. Instantly agnps deposition through facile solventless technique for poly-functional cotton fabrics. International journal of biological macromolecules. 2016, 84:308-31886. Ilić V, Šaponjić Z, Vodnik V, Potkonjak B, Jovančić P, Nedeljković J, Radetić M. The influence of silver content on antimicrobial activity and color of cotton fabrics functionalized with ag nanoparticles. Carbohydrate Polymers. 2009, 78:564-56987. Thanh NVK, Phong NTP. Investigation of antibacterial activity of cotton fabric incorporating nano silver colloid. IOP Publishing; 2009, 187:01207288. Raza ZA, Rehman A, Mohsin M, Bajwa SZ, Anwar F, Naeem A, Ahmad N. Development of antibacterial cellulosic fabric via clean impregnation of silver nanoparticles. Journal of Cleaner Production. 2015, 101:377-38689. Sathishkumar M, Sneha K, Yun Y-S. Immobilization of silver nanoparticles synthesized using curcuma longa tuber powder and extract on cotton cloth for bactericidal activity. Bioresource technology. 2010, 101:7958-796590. Silva CJ, Prabaharan M, Gübitz G, Cavaco-Paulo A. Treatment of wool fibres with subtilisin and subtilisin-peg. Enzyme and Microbial Technology. 2005, 36:917-92291. Zhu P, Sun G. Antimicrobial finishing of wool fabrics using quaternary ammonium salts. Journal of Applied Polymer Science. 2004, 93:1037-104192. Montazer M, Pakdel E. Functionality of nano titanium dioxide on textiles with future aspects: Focus on wool. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. 2011, 12:293-30393. Lü X, Cui S. Wool keratin-stabilized silver nanoparticles. Bioresource technology. 2010, 101:4703-470794. King DG, Pierlot AP. Absorption of nanoparticles by wool. Coloration Technology. 2009, 125:111-11695. Osório I, Igreja R, Franco R, Cortez J. Incorporation of silver nanoparticles on textile materials by an aqueous procedure. Materials Letters. 2012, 75:200-20396. Perumalraj R. Effect of sliver nanoparticles on wool fibre. ISRN Chemical Engineering. 2012, 201297. Raja A, Thilagavathi G, Kannaian T. Synthesis of spray dried polyvinyl pyrrolidone coated silver nanopowder and its application on wool and cotton for microbial resistance. Indian journal of fibre textile research. 2010, 35:5998. Hadad L, Perkas N, Gofer Y, Calderon‐Moreno J, Ghule A, Gedanken A. Sonochemical deposition of silver nanoparticles on wool fibers. Journal of applied polymer science. 2007, 104:1732-173799. Kelly FM, Johnston JH. Colored and functional silver nanoparticle− wool fiber composites. ACS applied materials interfaces. 2011, 3:1083-1092100. Falletta E, Bonini M, Fratini E, Lo Nostro A, Pesavento G, Becheri A, Lo Nostro P, Canton P, Baglioni P. Clusters of poly (acrylates) and silver nanoparticles: Structure and applications for antimicrobial fabrics. The Journal of Physical Chemistry C. 2008, 112:11758-11766101. Zhang Y-Q. Applications of natural silk protein sericin in biomaterials. Biotechnology advances. 2002, 20:91-100102. Gulrajani M, Gupta D, Periyasamy S, Muthu S. Preparation and application of silver nanoparticles on silk for imparting antimicrobial properties. Journal of applied polymer science. 2008, 108:614-623103. Vankar PS, Shukla D. Biosynthesis of silver nanoparticles using lemon leaves extract and its application for antimicrobial finish on fabric. Applied Nanoscience. 2012, 2:163-168104. Tang B, Li J, Hou X, Afrin T, Sun L, Wang X. Colorful and antibacterial silk fiber from anisotropic silver nanoparticles. Industrial Engineering Chemistry Research. 2013, 52:4556-4563105. Zhang G, Liu Y, Gao X, Chen Y. Synthesis of silver nanoparticles and antibacterial property of silk fabrics treated by silver nanoparticles. Nanoscale research letters. 2014, 9:1-8106. Potiyaraj P, Kumlangdudsana P, Dubas ST. Synthesis of silver chloride nanocrystal on silk fibers. Materials Letters. 2007, 61:2464-2466107. Abbasi AR, Morsali A. Formation of silver iodide nanoparticles on silk fiber by means of ultrasonic irradiation. Ultrasonics sonochemistry. 2010, 17:704-710108. Abbasi AR, Morsali A. Synthesis and properties of silk yarn containing ag nanoparticles under ultrasound irradiation. Ultrasonics sonochemistry. 2011, 18:282-287109. Lu Z, Meng M, Jiang Y, Xie J. Uv-assisted in situ synthesis of silver nanoparticles on silk fibers for antibacterial applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2014, 447:1-7110. Lu Z, Xiao J, Wang Y, Meng M. In situ synthesis of silver nanoparticles uniformly distributed on polydopamine-coated silk fibers for antibacterial application. Journal of colloid and interface science. 2015, 452:8-14111. Wang X, Gao W, Xu S, Xu W. Luminescent fibers: In situ synthesis of silver nanoclusters on silk via ultraviolet light-induced reduction and their antibacterial activity. Chemical engineering journal. 2012, 210:585-589112. Zhang D, Toh GW, Lin H, Chen Y. In situ synthesis of silver nanoparticles on silk fabric with pnp for antibacterial finishing. Journal of Materials Science. 2012, 47:5721-5728113. Chang S, Kang B, Dai Y, Chen D. Synthesis of antimicrobial silver nanoparticles on silk fibers via γ‐radiation. Journal of applied polymer science. 2009, 112:2511-2515114. Široky J, Široka B, Bechtold T. Alkali treatments of woven lyocell fabrics. Woven Fabrics. InTech. p. 2012:179-204115. Cai J, Kimura S, Wada M, Kuga S. Nanoporous cellulose as metal nanoparticles support. Biomacromolecules. 2008, 10:87-94116. Ifuku S, Tsuji M, Morimoto M, Saimoto H, Yano H. Synthesis of silver nanoparticles templated by tempo-mediated oxidized bacterial cellulose nanofibers. Biomacromolecules. 2009, 10:2714-2717117. Kim JY. Method for preparing an antimicrobial cotton of cellulose matrix having chemically and/or physically bonded silver and antimicrobial cotton prepared therefrom. 2012118. Mahltig B, Haufe H, Böttcher H. Functionalisation of textiles by inorganic sol–gel coatings. Journal of Materials Chemistry. 2005, 15:4385-4398119. Geranio L, Heuberger M, Nowack B. The behavior of silver nanotextiles during washing. Environmental Science Technology. 2009, 43:8113-8118120. Lorenz C, Windler L, Von Goetz N, Lehmann R, Schuppler M, Hungerbühler K, Heuberger M, Nowack B. Characterization of silver release from commercially available functional (nano) textiles. Chemosphere. 2012, 89:817-824121. Blaser SA, Scheringer M, MacLeod M, Hungerbühler K. Estimation of cumulative aquatic exposure and risk due to silver: Contribution of nano-functionalized plastics and textiles. Science of the total environment. 2008, 390
A review on Antibacterial Coloration Agent’s Activity, Implementation & Efficiency to Ensure the Ecofriendly & Green Textiles
Recently antibacterial colorants are most important research topic to the researchers. With high biodegradability, low toxicity, green chemistry and having potential application they exhibit a great impact on the textile dyeing and finishing industry. Natural colorants from plant sources either extraction or synthesis have been recently revealed as novel agents in imparting multifunctional properties to textiles such as antimicrobial, insect repellent, deodorizing, even UV protection. Many colorants, whether natural or synthetic, possess some inherent functions in addition to their coloring attribution. These properties can be utilized in textile dyeing processes to bring the particular functions to textiles in various textile industries. In other words, dyeing textiles with these colorants can combine dyeing with having a functionality finishes, a greener process than current separated wet treatments in terms of reduced generation of waste water and consumption of energy. Recently there has been a revival of interest in the use of natural dyes in textile coloration. This is a result of the stringent environmental standards imposed by many countries in response to the toxic and allergic reactions associated with the use of synthetic dyes. The aim of this review compilation is to give an overview on the main compounds used today for coloration of textile materials seeking for as antibacterial functionalization based on an evaluation of scientific publications, potential perspective of microbes on the environment and human health were considered
Immobilisation des catalyseurs sur supports textiles- cas du fer zérovalent et de l'enzyme glucose oxydase
This doctoral thesis dealt with an innovative concept of using textile as inexpensive but robust support material for immobilizing catalysts. Here, experiment-based evidence has been gathered for the case of immobilization of zerovalent iron particle (Fe0, inorganic catalyst) and glucose oxidase enzyme (GOx, biocatalyst) on textile. The goal of this thesis is to establish the feasibility of textile as support material for immobilization of catalysts in the pursuit of fabrication of robust catalytic system (oxidative and reductive) for wastewater treatment. Polyester nonwoven fabric (PF) has been chosen as textile support material for catalyst immobilization due to both qualitative (high strength, porosity, biocompatibility and resistance to most acids, oxidizing agents & microorganisms) and commercial (availability, cheap and easily customizable) advantages. A combination of eco-friendly and resource-efficient processes (such as plasma treatment, use of hyperbranched dendrimer, bio-based polymers) has been considered for modification of PF surface with favorable surface chemical properties in the view of high and stable immobilization yield of Fe0 and GOx while preserving the inherent performance of the catalysts in solution.The thesis has three distinct parts related to immobilizing catalysts on textiles- (a) immobilization and stabilization of inorganic Fe0 on PF and optimizing their viability in either oxidative and/or reductive catalytic system; (b) immobilization of GOx on PF and optimizing their use in bio-catalytic systems; (c) Design of heterogeneous bio-Fenton system using immobilized catalysts (Fe0 and GOx) on textile. In all parts, the hydrophobic fiber surface of PF was first activated by either air atmospheric (AP) or cold removal plasma (CRP) treatment followed by chemical grafting of either hyperbranched dendrimers (polyethylene glycol-OH / polyamidoamine ethylene-diamine core) or amine/thiol functional group-rich polymers (3-aminopropyl-triethoxysilane / polyethylenimine, chitosan / 1-thioglycerol). This was followed by immobilization of either Fe0 using in-situ / ex-situ reduction methods or GOx through the physical adsorption method. A series of experiments have been carried out through systematic experiment design to study the optimum conditions for catalyst immobilization as well as practicability and performance of resultant catalysts in a model catalytic system designed for removal of dyes, phenols, or pathogenic contaminants from water.The novelty of the research presented in this doctoral thesis firstly attributed to the novelty of immobilizing two types of catalysts (inorganic catalyst and biocatalysts) on polyester nonwoven fabric for wastewater treatment application. It provides a solution to the challenge related to support material in catalyst immobilization. Secondly, sustainable approaches have been used for the preparation of support material to efficiently immobilize the catalysts using resource-efficient eco-technologies (plasma eco-technology, dendrimers, biopolymers). Thirdly, the realization of an innovative concept related to designing a heterogeneous bio-Fenton system for wastewater treatment using Fe0 and GOx immobilized textiles is a novelty. In general, this detailed study on catalytic wastewater treatment (with their kinetics and mechanism study) using immobilized catalysts through both oxidative and reductive approach contributes not only to the general knowledge of the catalytic system, Fenton and bio-Fenton processes but also to the advancement towards scaling-up of an efficient and sustainable wastewater treatment system.Les systèmes catalytiques sont des technologies efficaces pour le traitement de l’eau en raison de leur efficacité à dégrader une large gamme de polluants. Les catalyseurs immobilisés sont réutilisables et présentent généralement une meilleure stabilité que les catalyseurs en solution. Cependant, dans de nombreux cas, la préparation du matériau de support est énergivore et plus coûteuse que les catalyseurs.Cette thèse de doctorat porte sur un concept innovant d'utilisation du textile comme matériau de support peu coûteux pour l’immobilisation robuste de deux différents catalyseurs : 1. des particules de fer zéro-valent (catalyseur inorganique Fe0) et 2- l'enzyme glucose oxydase (GOx-biocatalyseur). Le but de cette thèse est de confirmer l’utilisation potentielle de ces catalyseurs supportés au textile, pour le traitement des eaux usées, par le biais de dégradation oxydative ou réductive).Un tissu non tissé en polyester a été choisi comme matériau de support textile. Des éco-procédés et des matériaux plus écologiques (les traitements plasma, des dendrimères, des polymères biosourcés) ont été utilisés pour la modification de surface des fibres de polyesters créant ainsi des groupements fonctionnels capables de mieux fixer les catalyseurs (Fe0 et GOx), tout en préservant leurs performances inhérentes de catalyseurs en solution. Des outils d’analyse de surface permettent la caractérisation des fibres de polyester fonctionnalisées par différentes méthodes avant et après l’immobilisation des catalyseurs.La méthode de réduction d’ ions ferriques ainsi que les propriétés chimiques de surface du PF influencent sur la stabilité des particules de Fe0 immobilisés. Les groupes fonctionnels -COOH, –OH et -SH favorisent la quantité et la stabilisation de particules de Fe0. Ce catalyseur immobilisé a une propriété catalytique élevée pour l'élimination des polluants dans l'eau par le biais d'un système hétérogène de type Fenton ou d’une réduction catalytique. Il inhibe également les agents pathogènes dans l’eau. Un plan d’expériences a permis d’étudier les conditions optimales pour l'immobilisation du catalyseur Fe0 ainsi que ses performances dans un système catalytique modèle conçu pour l'élimination des colorants, des phénols ou des contaminants pathogènes dans l'eauPour les enzymes GOx immobilisées sur le polyester, les résultats montrent que le traitement par plasma CRP qui génère plus de groupes -COOH ou -NH2 à la surface PF, est plus efficace pour assurer une quantité et une stabilité suffisante de GOx. L’enzyme supportée peut être utilisée, dans un système de bio-Fenton hétérogène, pour la dégradation des polluants. Le concept d’un système bio-Fenton hétérogène pour le traitement des eaux usées, à l'aide avec d’un catalyseur inorganique (Fe0) et d’un biocatalyseur enzymatique GOx, immobilisés sur textile, est innovant. Cette thèse confirme la faisabilité de ce concept à l’échelle de laboratoire
Immobilizing catalysts on textiles : case of zerovalent iron and glucose oxidase enzyme
Catalytic systems are one of the most effective technologies of modern chemical processes. The system uses a molecule called ‘catalyst’ that is capable of catalyzing a reaction without being produced or consumed during the process. A catalytic system requires the separation of catalysts from products after each cycle, which is an expensive and resource-intensive process. This brought to the relevance of immobilization of catalyst, where catalysts are bind to a solid support material that will ensure the easy separation of catalyst. Immobilized catalysts are reusable and usually show better stability than the free catalyst. However, immobilization of catalyst is challenging, as it requires exclusive support material involving a complex preparation process. In many instances, the preparation of support material is more resource-intensive and expensive than the catalyst themselves. Therefore, this doctoral thesis focused on the innovative concept of using textile as reliable, widely accessible, and versatile support material for catalyst immobilization. Evidence from systematic experiments was gathered for the case of immobilization of an inorganic catalyst (zerovalent iron-Fe0) and a biocatalyst (glucose oxidase -GOx) on textile support. The goal of this thesis is to establish the feasibility of textile as support material for immobilization of catalyst in the pursuit of fabrication of heterogeneous catalytic system (oxidative and reductive) for wastewater treatment. Polyester nonwoven fabric (PF) was chosen as textile support material for catalyst immobilization due to both qualitative (high strength, porosity, biocompatibility and resistance to most acids, oxidizing agents, and microorganisms) and commercial (availability, cheap and easily customizable) advantages. A combination of eco-friendly and resource-efficient processes (such as plasma treatment, hyperbranched dendrimer, bio-based polymers) has been used for tailoring the PF surface with favorable surface chemical properties in the view of high and stable immobilization yield of the catalyst. The thesis has three distinct parts related to immobilizing catalyst on textiles- (a) immobilization of Fe0 on PF and optimizing their feasibility in both oxidative and reductive catalytic system; (b) immobilization of GOx on PF and optimizing their use in a bio-catalytic system; (c) design of the complete heterogeneous bio-Fenton system using immobilized catalysts (Fe0 and GOx). In all parts, the hydrophobic surface of PF was activated by plasma ecotechnology (either air atmospheric -AP or cold removal plasma-CRP) followed by chemical grafting of hyperbranched dendrimers (polyethylene glycol-OH or polyamidoamine ethylene-diamine core) or functional polymers (3-aminopropyl-triethoxysilane, polyethylenimine, chitosan, or 1-thioglycerol) before immobilizing either of two catalysts. The immobilization of Fe0 was carried out through either the in-situ or ex-situ reduction-immobilization method, whereas GOx was immobilized through the physical adsorption method. Several approaches were explored in search of optimum conditions for catalyst immobilization as well as to improve the catalytic performance of immobilized catalysts. Diverse analytical and instrumental techniques were used to monitor the surface modification of textiles, efficiency of immobilization of catalysts, Physico-chemical properties of immobilized catalysts, and their catalytic activities in the removal of dyes, phenols, or pathogenic pollutants from water. Results from plasma treatment showed that both AP and CRP successfully activated the PF surface through integrating polar functional groups (–COOH and –OH) by AP and carboxyl/hydroxyl (–COOH/–OH), amino (–NH2) functional groups by CRP. Along with that, grafted hyperbranched dendrimers and functional polymers on plasma-activated PF provided a tailor-made surface with specific end functional groups. Regarding the immobilization of Fe0 on PF, the results revealed that the reduction method (in-situ or ex-situ) of producing Fe0 have synergistic effects on the morphology, stability, particle size, and distribution of the immobilized Fe0. The surface chemical properties of PF also influenced the stability of immobilized Fe0 and related properties as observed throughout various studies. Detailed results revealed that a PF surface rich in –COOH, –OH, and –SH functional groups favors the loading and stabilization of Fe0 over surface rich in – NH2 functional groups. To end with, all Fe0-immobilized PF showed high catalytic activates in the removal of pollutants from water in both oxidative and reductive systems. In the case of GOx-immobilized PF, the success of immobilization of enzyme on textile was found to be related to the type and extent of surface functional groups present on the PF surface. The results demonstrated that PF surface rich in –COOH, – NH2 functional groups guaranteed higher loading and stability of GOx compared to –COOH, –OH functional groups-rich surface. These results carry great importance as they provide evidence of textile:enzyme interactions and grounds for further robust immobilization of GOx on textile support through surface engineering. As a proof of concept, this thesis also reveals the first successful design of a complete heterogeneous bio-Fenton system for wastewater treatment using immobilized catalysts (Fe0 and GOx). The novelty of the research presented in this doctoral thesis is primarily attributed to the novelty of immobilizing two different types of catalysts (inorganic catalyst and biocatalysts) on synthetic textile support for wastewater treatment application. In general, this thesis contributes to general knowledge of the heterogeneous catalytic system, Fenton/Fenton-like system, and the bio-Fenton system as well as it opens promising prospects of the use of textile as support material for immobilizing different catalysts for a wide range of applications. Katalytiska system är en av de effektivaste teknikerna för moderna kemiska processer. I processen används en molekyl, en ”katalysator” som är kapabel att pådriva en kemisk reaktion utan att själv bli producerad eller förbrukad under processens gång. Katalytiska system kräver separation av katalysatorerna från andra produkter efter varje cykel, vilket är både kostsamt och resurskrävande. Därför är det relevant att immobilisera katalysatorerna genom att binda dem till ett solitt stödmaterial som möjliggör att katalysatorerna enkelt kan separeras. Immobiliserade katalysatorer kan återanvändas och visar ofta på bättre stabilitet än fria katalysatorer. Men det är en långdragen process att immobilisera katalysatorer då det kräver exklusiva stödmaterial och ett komplext förberedelseförlopp. I många fall är stödmaterialen mer kostsamma än katalysatorerna själva. I denna doktorsavhandling arbetar jag därför med ett innovativt koncept, där jag använder textil som ett billigt och enkelt stödmaterial för immobilisering av katalysatorer. Genom systematiskt utförda experiment har underlag samlats in för att visa på immobilisering av en oorganisk katalysator (nollvalent järnpartikel-Fe0) och ett biokatalysator (glukosoxidasenzym-GOx) på en textil stödstruktur. Syftet med denna avhandling är att fastställa möjligheten att använda textil som stödmaterial för immobilisering av katalysatorer i jakten på framställningen av ett heterogent katalytiskt system (oxiderande och reducerande) för rening av avloppsvatten. Ett nonwoventyg av polyester (PF) valdes som textilt stödmaterial för immobilisering av katalysatorer för dess kvalitativa (hög styrka, porositet, biokompabilitet och resistans mot de flesta syror, oxiderande medel samt mikroorganismer) och kommersiella (tillgänglighet, låg kostnad och enkelhet att modifiera) fördelar. En kombination av miljövänliga och resurseffektiva processer (så som plasmabehandling, användning av hypergrenade dendrimerer, biobaserade polymerer) har använts för att modifiera PF ytan till fördelaktiga ytkemiska egenskaper gällande hög och stabil utdelning av immobiliserade katalysatorer. Avhandlingen består av tre separata delar som handlar om immobilisering av katalysatorer på textiler: (a) immobilisering och stabilisering av oorganiskt Fe0 på PF och optimering av dess möjligheter i oxiderande och/eller reducerande katalytiska system, (b) immobilisering av GOx på PF och optimering av dess användning i biokatalytiska system, (c) utformning av heterogena bio-Fentonsystem med hjälp av immobiliserade katalysatorer (Fe0 och GOx). I alla delar aktiverades PF:s hydrofobiska fiberyta genom en plasmabehandling (antingen atmosfärisk plasma -AP eller kall fjärrplasma -CRP) efterföljt av kemisk ympning med hypergrenade dendrimerer (polyetylenglykol-OH/polyamidoamin-etylendiaminkärna) eller polymerer som innehåller den funktionella gruppen amin/tiol (3-aminopropyl-trietoxysilan/polyetylenimin, kitosan/1-tioglycerol) innan immobilisering av endera katalysatorerna. Immobiliseringen av Fe0 genomfördes med in-situ eller ex-situ reduktions-immobiliseringsmetod, medan GOx immobiliserades genom en fysisk adsorptionsmetod. Ett antal tillvägagångssätt utforskades i sökandet efter optimala förhållanden för immobilisering av katalysatorer samt förbättringsmöjligheter av immobiliserade katalysatorers katalytiska förmåga. Olika analytiska och instrument-tekniker användes för att kontrollera ytmodifieringen av textilier, effektiviteten av immobiliserade katalysatorer, fysiokemiska egenskaper av immobiliserade katalysatorer och deras katalytiska aktivitet för avlägsnandet av färgämnen, fenoler eller patogena föroreningar från vatten. Resultaten från plasmabehandlingen visade att båda AP och CRP framgånsrikt aktiverat PF ytan genom integrering av polära funktionella grupper (–COOH och –OH) genom AP och karboxyl/hydroxyl-grupper (–COOH/–OH) och aminogrupper (–NH2) genom CRP. Dessutom kunde ympade hypergrenade dendrimerer och funktionella polymerer på plasma-aktiverad PF ge en skräddarsydd yta med specifika funktionella ändgrupper. När det gäller immobiliseringen av Fe0 på en PF-yta visade resultaten att reduktionsmetoderna (in-situ eller ex-situ) för framställning av Fe0-partiklar hade synergieffekter på hur väl immobiliseringen lyckades när det gäller morfologi, stabilitet, partikelstorlek och spridning av immobiliserad Fe0. Ytkemiska egenskaper av PF påverkade också stabiliteten av immobiliserad Fe0 och tillhörande egenskaper, något som observerats genom flertalet studier. Detaljerade resultat visade att en PF-yta som innehåller de funktionella grupperna –COOH, –OH, och –SH främjar belastning och stabiliseringen av Fe0 mer än en yta rik på de funktionella grupperna – NH2. Slutligen, alla Fe0-immobiliserade PF prov visade hög katalytisk aktivitet i avlägsnandet av föroreningar i vatten i både oxiderande och reducerande system. När det gäller GOx-immobiliserade PF prov fanns det att lyckad immobilisering av enzym på textil var relaterad till typen och omfattningen av funktionella ytgrupper integrerade i PF-ytan. Resultaten visade vidare att en PF-yta med –COOH eller – NH2-grupper garanterade högre belastning och stabilitet hos GOx jämfört med -COOH och -OH rika ytor. Dessa resultat är viktiga eftersom de styrker interaction mellan den textila ytan och enzymer, vilket utgör en grund för möjligheterna för starka immobiliseringar av GOx på textila stödmaterial. Som validering av konceptet så visar denna avhandling också den första lyckade framtagningen av ett komplett heterogent bio-Fenton system för rening av avloppsvatten med hjälp av immobiliserade katalysatorer (Fe0 och GOx). Denna avhandling om immobilisering av katalysatorer på textil och applicering av immobiliserade katalysatorer i rening av avloppsvatten (både oxiderande och reducerande system) bidrar inte bara till allmän kunskap om heterogena katalytiska system, Fenton/Fenton-system och bio-Fenton system, utan öppnar också upp för lovande möjligheter att använda textilier som stödmaterial för immobilisering av olika katalysatorer för ett brett spektrum av användningsområden. Les systèmes catalytiques font partie des technologies les plus efficaces des procédés chimiques modernes. Le système utilise une molécule appelée « catalyseur » qui est capable de catalyser une réaction sans n’être produit ni consommé pendant le procédé. Le système catalytique requiert de séparer les catalyseurs des produits après chaque cycle, ce qui est un processus coûteux et gourmand en ressources. Cela montre la pertinence de l’immobilisation des catalyseurs, où les catalyseurs se lient à un matériau de support solide afin de garantir la séparation facile des catalyseurs. Cependant, l'immobilisation des catalyseurs n’est pas toujours facile, car elle nécessite un procédé de préparation complexe du matériau de support comprenant multiples étapes. Dans de nombreux cas, la préparation du matériau de support est plus énergivore et plus coûteuse que les catalyseurs. Cette thèse de doctorat porte sur un concept innovant d'utilisation du textile comme matériau de support peu coûteux et robuste pour l’immobilisation de deux catalyseurs différents. Des preuves expérimentales ont été rassemblées pour le cas de l'immobilisation de particules de fer zéro-valent (catalyseur inorganique Fe0) et l'enzyme glucose oxydase (GOx-biocatalyseur) sur support textile. Le but de cette thèse est de confirmer l’utilisation potentielle de ces catalyseurs supportés au textile, pour le traitement des eaux usées, par le biais d’un système catalytique robuste (oxydative ou réductive). Un tissu non tissé en polyester (PF) a été choisi comme matériau de support textile pour l'immobilisation des catalyseurs en raison des avantages à la fois qualitatifs (haute résistance, porosité, biocompatibilité et résistance à la plupart des acides, agents oxydants et micro-organismes) et commerciaux (disponibilité, bon marché et facilement personnalisable). Une combinaison de procédés et de matériaux plus écologiques et économes en ressources (traitements plasma, des dendrimères, des polymères biosourcés) a été utilisée pour la modification de surface des fibres de polyesters créant ainsi des groupements fonctionnels capables de mieux fixer les catalyseurs (Fe0 et GOx), en termes de quantité et stabilité, tout en préservant les performances inhérentes des catalyseurs. La thèse comporte trois parties distinctes liées à l'immobilisation des catalyseurs sur textiles : (a) l'immobilisation et la stabilisation de Fe0 inorganique sur PF et l'optimisation de leur viabilité dans un système catalytique oxydant et / ou réducteur ; (b) l'immobilisation des GOx sur les PF et l'optimisation de leur utilisation dans les systèmes bio-catalytiques ; (c) la conception d'un système bio-Fenton hétérogène utilisant des catalyseurs immobilisés (Fe0 et GOx) sur textile. Dans toutes les parties, la surface de la fibre hydrophobe de PF a d'abord été activée par un traitement plasma atmosphérique sous air (AP) ou par un plasma froid (CRP) suivi d'un greffage chimique de dendrimères hyper-ramifiés ou de polymères riches en groupements amine ou thiol. Les dendrimères utilisés sont à base de noyau polyéthylène glycol-OH ou de polyamidoamine éthylène diamine, tandis que les polymères riches en amine/thiol utilisés sont le 3-aminopropyl-triéthoxysilane, le polyéthylèneimine, le chitosane et le 1-thioglycérol. Cela a été suivi par l'immobilisation de catalyseurs Fe0 via des méthodes de réduction in-situ / ex-situ ou par l’immobilisation d’enzymes GOx via l'adsorption physique. Un nombre d’approches a été exploré dans la recherche des conditions optimales pour l’immobilisation de catalyseurs ainsi que pour l’amélioration des performances catalytiques des catalyseurs immobilisés. Diverses techniques analytiques et instrumentales ont été utilisées pour surveiller la modification de surfaces des textiles, l’efficacité de l’immobilisation des catalyseurs, les propriétés physico-chimiques des catalyseurs immobilisés et leur activité catalytique dans l'élimination des colorants, des phénols ou des contaminants pathogènes dans les eaux usées. Les résultats ont montré que, pour les deux types de traitement plasma, l'AP a activé avec succès la surface de la fibre PF avec l'intégration de groupes fonctionnels polaires (–COOH et –OH), tandis que la CRP avec un mélange O2 / N2 intègre à la fois des groupes carboxyle / hydroxyle (–COOH / –OH) et des groupes fonctionnels amines (–NH2). Parallèlement, le greffage des dendrimères hyper-ramifiés ou des polymères ont conduit à des propriétés de surface faites sur-mesure avec des groupes fonctionnels spécifiques à la surface de la fibre PF. En ce qui concerne l'immobilisation de Fe0 sur une surface PF, les résultats ont révélé que les méthodes de réduction (in-situ ou ex-situ) pour la formation de particules Fe0 avaient des effets synergiques sur le succès de l'immobilisation en termes de morphologie, de stabilité, de taille et de distribution des particules. Les propriétés chimiques de surface PF ont également influencé la stabilité du Fe0 immobilisé et des propriétés associées, comme observé tout au long des études. Les résultats détaillés dans cette thèse ont révélé qu'une surface PF riche en groupes fonctionnels –COOH, –OH et –SH favorise la quantité et la stabilisation de Fe0 en comparaison avec une surface riche en groupes fonctionnels -NH2. Les catalyseurs Fe0 immobilisés sur PF ont montré une propriété catalytique élevée dans les systèmes catalytiques pour l'élimination des polluants aquatiques par le biais d'un système hétérogène de type Fenton ou d’une réduction catalytique. Dans le cas des GOx immobilisés sur le polyester-PF, ce résultat est lié au type et à l'étendue des groupes fonctionnels de surface intégrés à la surface PF. Les résultats ont démontré qu'une surface PF riche en groupes fonctionnels –COOH, –NH2 assurait une quantité et une stabilité plus élevées de GOx par rapport à une surface PF riche en groupes fonctionnels –COOH, –OH. Ces résultats portent grande importance car ils fournissent des preuves de l’interaction entre la surface textile et l’enzyme, posant les bases pour des possibilités d’immobilisation forte de GOx sur des matériaux textiles de support. En tant que preuve de concept, cette thèse révèle également la première conception fructueuse d’un système bio-Fenton complètement hétérogène pour le traitement des eaux usées utilisant des catalyseurs immobilisés (Fe0 et GOx). Le caractère innovant de la recherche présentée dans cette thèse de doctorat est tout d'abord attribuée à la nouveauté de l'immobilisation de deux types de catalyseurs (catalyseurs inorganiques et biocatalyseurs) sur non-tissé polyester pour l’application dans le traitement des eaux usées. De manière générale, cette thèse contribue à la connaissance générale du système catalytique hétérogène, des procédés de Fenton et de bio-Fenton, aussi bien qu’elle ouvre des perspectives prometteuses d’utilisation de textiles comme matériau de support pour l’immobilisation de divers catalyseurs pour un large éventail d’applications. 催化系统是当代化学处理手段中最有效的技术之一。 这一项技术利用“催化剂”这种小分子去催化一个反应。 在这一过程中,“催化剂”既不会被消耗,也不是这一化学反应的产物。催化系统需要在每次反应后分离催化剂,催化剂的分离过程通常是昂贵且资源密集。过程中涉及到催化剂的固定化,即催化剂与固体载体材料结合,以确保催化剂易于分离。固定化催化剂可重复使用,通常比催化剂在溶液中表现出更好的稳定性。然而,催化剂的固定化具有挑战性,因为它需要多步骤复杂的制备过程,尤其是载体材料。在许多情况下,制备载体材料比制备催化剂更耗费资源和成本。 基于此,本论文提出了一个创新的概念,即使用纺织品作为廉价并且易于制备的载体材料来固定催化剂。本文收集了无机催化剂(Fe0-零价铁离子)和生物催化剂(GOx-葡萄糖氧化酶)在纺织品上固定化的实验证据。本论文的目的是建立纺织品作为催化剂固定化载体材料的可行性,以寻求制造异质催化系统(氧化反应和还原反应)用于废水处理。涤纶无纺布(PF)由于其质量上的(高强度、孔隙率、生物相容性和对大多数酸、氧化剂和微生物的耐受性)和商业上的(可用性、廉价和易于定制)的优点,被优选为催化剂固定化的纺织支撑材料。通过采用结合环保和资源高效的工艺(如等离子体处理、使用超支化树状大分子、生物基聚合物)可以对 PF 进行表面改性而使其具有良好的表面化学性质,从而可以获得催化剂的高固定化率和稳定固着。 本论文分为三部分:(a)无机 Fe0 在 PF 上的固定,以及在氧化和/或还原催化体系中的活性优化;(b)将 GOx 固定在 PF 上并优化其在生物催化系统中的应用;(c)纺织品固定化催化剂(Fe0 和 GOx)非均相生物-芬顿体系的设计。在所有体系中,首先通过空气常压(AP)或冷远程等离子体(CRP)处理活化 PF的疏水纤维表面,然后在其上化学接枝超支化树状大分子(聚乙二醇 OH/聚酰胺胺-乙二胺核)或功能性聚合物(3-氨丙基三乙氧基硅烷/聚乙烯亚胺,壳聚糖/1-硫代甘油)去固定两种催化剂中的任意一种。然后用原位/非原位还原法固定 Fe0,或用物理吸附法固定 GOx。通过进行一系列的试验方法,以研究催化剂固定化的最佳条件,并且提升催化剂的催化固定性能。 两种等离子体处理的结果表明,AP 通过集成极性官能团(–COOH 和–OH)成功活化了 PF 纤维表面,而使用 O2 / N2气体的 CRP 则集成了羧基/羟基(–COOH / –OH )和氨基(–NH2)官能团。随之而来的是,接枝的超支化树枝状大分子或富含胺/硫醇官能团的聚合物为定制的表面提供了在 PF 纤维表面具有特定末端官能团的表面。多种仪器和分析技术验证了 PF 纤维表面的活化和官能团定制效果。纺织品的表面改性;催化剂的固定效率以及固定后催化剂的物理化学性能;对污水中染料,苯酚以及致病污染物的催化反应被一系列理论和仪器分析进行了监测。结果表明,还原法制备 Fe0 粒子的方法(原位或非原位)在形貌、稳定性、粒径和分布等方面对 Fe0的成功固定具有协同效应。随着还原方法的采用,PF 的表面化学性质也影响了固定化 Fe0 的稳定性及相关性质。本论文所考虑的多种方法的详细结果表明,富含-COOH、-OH 和-SH 官能团的 PF 表面比富含-NH2 官能团的 PF 表面更有利于 Fe0 的负载和稳定。Fe0 固定化 PF 催化剂在非均相芬顿/类芬顿体系、催化还原体系和病原体抑制体系中均表现出良好的催化性能。在固定化 GOx 的 PF样品中,CRP 比 AP 更能保证固定化 GOx 的高负载和稳定性。这一结果与集成在 PF 表面的表面官能团的类型和程度有关。当 GOx 被固定在特制的 PF 表面(用交联聚合物)时,也观察到了类似的现象。结果进一步表明,与富含-COOH, - OH 这两种官能团的表面相比,含有-COOH 或-NH2 基团的 PF 表面确保了GOx 的较高负载量和稳定性,这反映在所得 GOx 固定化纺织品的催化性能上。这一结果的重要性在于它提供了酵素于纺织材料表面应用的证据并且为 GOx 强大的固化作用应用在纺织支撑材料上的可能性打下了基础。最后,本论文研究在纺织品上使用固定化催化剂的异质生物芬顿系统进行的实验, 提供了与概念证明有关的充分证据并且展示了利用固定化催化剂(Fe0 和 GOx)设计的首个成功的为污水处理设计的异质生物芬顿系统。 本博士论文的创新之处首先在于将两种催化剂(无机催化剂和生物催化剂)固定在涤纶无纺布上用于废水处理的新颖性。总的来说,这一项论文研究有助于催化系统、芬顿和生物芬顿工艺的一般认识同时也有助于提高污水处理系统的效率和可持续性。
Valve-jet printing of redox enzyme on polyester textile: a sustainable enzyme immobilization approach
The resource-intensive preparation procedures and difficulty in free structure formation have restricted the widespread application of existing enzyme immobilization strategies. In this study,valve-jet printing as a resource-efficient process for robust immobilization of redox enzyme (Glucoseoxidase-GOx) on polyester fabric support has been reported for the first time. For that, GOxenzyme has been directly printed on plasma-activated polyester fabric in a predefined pattern. Along with superficial analysis of the textile before and after the modifications, the loading, stability, and activity of the immobilized enzyme have also been studied in detail. The results indicated successful activation of polyester textile air atmospheric plasma treatment (O2/N2) through integrating carboxyl, amine functional groups. The enzymatic colorimetric analysis shows that most of the loaded enzymes retained to their activity where few were inactivated due to blocking of their active site during printing. This study herein provides further proof of the fundamental enzyme printing concept as a resource-efficient enzyme immobilization strategy for sustainable and green chemistry applications.SMDTe
Immobilizing Redox Enzyme on Amino Functional Group-Integrated Tailor-Made Polyester Textile: High Loading, Stability, and Application in a Bio-Fenton System
This study reports the first approach of immobilizing a redox (glucose oxidase-GOx) enzyme on the amino functional group-integrated tailor-made textile (polyester nonwoven fabric-PF) support matrix. To achieve that, polyethylenimine if not chitosan was chemically grafted on plasma (with O2/N2 gas)-activated PF before immobilizing the GOx enzyme through physical adsorption. Diverse qualitative and quantitative characterization methods were used to validate the successful activation and GOx immobilization on amino functional group-integrated tailor-made PF. Results showed that integration of amino functional groups on PF offers a great deal of favorable conditions during enzyme immobilization through covalent or ionic interaction between counter functional groups as reflected in high loading (55.46%) and good operational (78.37%) and thermal stability (∼60 °C) with excellent recyclability (60% activity/15-cycles) and poor leaching (22%) of immobilized GOx. Enzymatic reaction kinetics of free and immobilized GOx revealed the existence of relative mass transfer and diffusion limitation of immobilized GOx as apprehended in the apparent Michaelis constant (Km) and maximum velocity of the reaction (Vmax). The resultant immobilized GOx’s were studied for the first time in the removal of pollutants (10 mg L–1 crystal violet) from water in a heterogeneous bio-Fenton system. Results showed as high as 88.69% pollutant removal at 1.19 × 10–2 min–1 following pseudo-first-order kinetic model as supported by R2 values beyond 97. These results are of great importance as they provide fundamental evidence and proof of concepts regarding immobilizing biocatalysts on textiles and their potential application in a robust heterogeneous catalytic system for environmental and green chemistry applications.SMDTe
Knit Fabric Mercerisation through the Use of High-Concentration NaOH in a Scouring and Bleaching Bath using an Exhaustion Method
The combined scouring, bleaching and mercerising of single jersey cotton knitted fabrics through the use of high-concentration NaOH was evaluated in this study. The effect of that new combined process was compared, contrasted and analysed with pristine scoured, bleached fabric and conventional bleached fabric. Surface morphology, structural analysis and the colour strength of dyed fabrics were examined using a scanning electron microscope (SEM), X-ray diffraction (XRD) and spectrophotometric analysis. The barium activity number and bursting strength of treated fabric was evaluated and analysed in accordance with the relevant AATCC test standards. It was found that a sample treated through combined scouring, bleaching and mercerising demonstrated a higher level of smoothness and lustre than typical scoured and bleached fabric. The treated sample exhibited decreased crystallinity, as well as the transformation of the crystalline phase in a similar manner. The barium activity number, bursting strength and improved K/S value were also in line with the separately mercerised fabric. The above described properties of the combined scoured, bleached and mercerised fabric are sound evidence of the effectiveness of the process