2,315 research outputs found
Coalition Formation and Combinatorial Auctions; Applications to Self-organization and Self-management in Utility Computing
In this paper we propose a two-stage protocol for resource management in a
hierarchically organized cloud. The first stage exploits spatial locality for
the formation of coalitions of supply agents; the second stage, a combinatorial
auction, is based on a modified proxy-based clock algorithm and has two phases,
a clock phase and a proxy phase. The clock phase supports price discovery; in
the second phase a proxy conducts multiple rounds of a combinatorial auction
for the package of services requested by each client. The protocol strikes a
balance between low-cost services for cloud clients and a decent profit for the
service providers. We also report the results of an empirical investigation of
the combinatorial auction stage of the protocol.Comment: 14 page
Exactly Conservative Integrators
Traditional numerical discretizations of conservative systems generically
yield an artificial secular drift of any nonlinear invariants. In this work we
present an explicit nontraditional algorithm that exactly conserves these
invariants. We illustrate the general method by applying it to the three-wave
truncation of the Euler equations, the Lotka--Volterra predator--prey model,
and the Kepler problem. This method is discussed in the context of symplectic
(phase space conserving) integration methods as well as nonsymplectic
conservative methods. We comment on the application of our method to general
conservative systems.Comment: 30 pages, postscript (1.3MB). Submitted to SIAM J. Sci. Comput
Impact of single parameter changes on Ceph cloud storage performance
In a general purpose cloud system efficiencies are yet to be had from supporting diverse applications and their requirements within a storage system used for a private cloud. Supporting such diverse requirements poses a significant challenge in a storage system that supports fine grained configuration on a variety of parameters. This paper uses the Ceph distributed file system, and in particular its global parameters, to show how a single changed parameter can effect the performance for a range of access patterns when tested with an OpenStack cloud system
Method of detecting system function by measuring frequency response
Real-time battery impedance spectrum is acquired using a one-time record. Fast Summation Transformation (FST) is a parallel method of acquiring a real-time battery impedance spectrum using a one-time record that enables battery diagnostics. An excitation current to a battery is a sum of equal amplitude sine waves of frequencies that are octave harmonics spread over a range of interest. A sample frequency is also octave and harmonically related to all frequencies in the sum. The time profile of this signal has a duration that is a few periods of the lowest frequency. The voltage response of the battery, average deleted, is the impedance of the battery in the time domain. Since the excitation frequencies are known and octave and harmonically related, a simple algorithm, FST, processes the time record by rectifying relative to the sine and cosine of each frequency. Another algorithm yields real and imaginary components for each frequency
The case for cloud service trustmarks and assurance-as-a-service
Cloud computing represents a significant economic opportunity for Europe. However, this growth is threatened by adoption barriers largely related to trust. This position paper examines trust and confidence issues in cloud computing and advances a case for addressing them through the implementation of a novel trustmark scheme for cloud service providers. The proposed trustmark would be both active and dynamic featuring multi-modal information about the performance of the underlying cloud service. The trustmarks would be informed by live performance data from the cloud service provider, or ideally an independent third-party accountability and assurance service that would communicate up-to-date information relating to service performance and dependability. By combining assurance measures with a remediation scheme, cloud service providers could both signal dependability to customers and the wider marketplace and provide customers, auditors and regulators with a mechanism for determining accountability in the event of failure or non-compliance. As a result, the trustmarks would convey to consumers of cloud services and other stakeholders that strong assurance and accountability measures are in place for the service in question and thereby address trust and confidence issues in cloud computing
Contemporary analysis and architecture for a generic cloud-based sensor data management platform.
An increasing volume of data is being generated by sensors and smart devices deployed in different areas, often far from computing facilities such as data centres. These data can be difficult to gather and process using local computing infrastructure. This is due to cost and limited resources. Cloud computing provides scalable resources that are capable of addressing such problems. However, platform-independent methods of gathering and transmitting sensor data to Clouds are not widely available. This paper presents a state-of-the-art analysis of Cloud-based sensor monitoring and data gathering platforms. It discusses their strengths and weaknesses and reviews the current trends in this area. Informed by the analysis, the paper further proposes a generic conceptual architecture for achieving a platform-neutral Cloud-based sensor monitoring and data gathering platform. We also discuss the objectives, design decisions and the implementation considerations for the conceptual architecture.IC
- …