3,534 research outputs found
Elements of the Continuous Renormalization Group
These two lectures cover some of the advances that underpin recent progress
in deriving continuum solutions from the exact renormalization group. We
concentrate on concepts and on exact non-perturbative statements, but in the
process will describe how real non-perturbative calculations can be done,
particularly within derivative expansion approximations. An effort has been
made to keep the lectures pedagogical and self-contained. Topics covered are
the derivation of the flow equations, their equivalence, continuum limits,
perturbation theory, truncations, derivative expansions, identification of
fixed points and eigenoperators, and the role of reparametrization invariance.
Some new material is included, in particular a demonstration of
non-perturbative renormalizability, and a discussion of ultraviolet
renormalons.Comment: Invited lectures at the Yukawa International Seminar '97. 20 pages
including 6 eps figs. LaTeX. PTPTeX style files include
The Renormalization Group and Two Dimensional Multicritical Effective Scalar Field Theory
Direct verification of the existence of an infinite set of multicritical
non-perturbative FPs (Fixed Points) for a single scalar field in two
dimensions, is in practice well outside the capabilities of the present
standard approximate non-perturbative methods. We apply a derivative expansion
of the exact RG (Renormalization Group) equations in a form which allows the
corresponding FP equations to appear as non-linear eigenvalue equations for the
anomalous scaling dimension . At zeroth order, only continuum limits
based on critical sine-Gordon models, are accessible. At second order in
derivatives, we perform a general search over all , finding the
expected first ten FPs, and {\sl only} these. For each of these we verify the
correct relevant qualitative behaviour, and compute critical exponents, and the
dimensions of up to the first ten lowest dimension operators. Depending on the
quantity, our lowest order approximate description agrees with CFT (Conformal
Field Theory) with an accuracy between 0.2\% and 33\%; this requires however
that certain irrelevant operators that are total derivatives in the CFT are
associated with ones that are not total derivatives in the scalar field theory.Comment: Note added on "shadow operators". Version to be published in Phys.
Lett.
Renormalization group properties of the conformal sector: towards perturbatively renormalizable quantum gravity
The Wilsonian renormalization group (RG) requires Euclidean signature. The
conformal factor of the metric then has a wrong-sign kinetic term, which has a
profound effect on its RG properties. Generically for the conformal sector,
complete flows exist only in the reverse direction (i.e. from the infrared to
the ultraviolet). The Gaussian fixed point supports infinite sequences of
composite eigenoperators of increasing infrared relevancy (increasingly
negative mass dimension), which are orthonormal and complete for bare
interactions that are square integrable under the appropriate measure. These
eigenoperators are non-perturbative in and evanescent. For
spacetime, each renormalised physical operator exists but only
has support at vanishing field amplitude. In the generic case of infinitely
many non-vanishing couplings, if a complete RG flow exists, it is characterised
in the infrared by a scale , beyond which the field
amplitude is exponentially suppressed. On other spacetimes, of length scale
, the flow ceases to exist once a certain universal measure of inhomogeneity
exceeds . Importantly for cosmology, the
minimum size of the universe is thus tied to the degree of inhomogeneity, with
spacetimes of vanishing size being required to be almost homogeneous. We
initiate a study of this exotic quantum field theory at the interacting level,
and discuss what the full theory of quantum gravity should look like, one which
must thus be perturbatively renormalizable in Newton's constant but
non-perturbative in .Comment: 52 pages, 4 figures; fixed typos; improved explanation of the sign of
V, and the use of Sturm-Liouville theory. To be publ in JHE
Simple Strategies for Broadcasting Repository Resources
4th International Conference on Open RepositoriesThis presentation was part of the session : Conference PostersNSDL's data repository for STEM education is designed to provide organized access to digital educational materials through its online portal, NSDL.org. The resources held within the NSDL data repository along with their associated metadata can also be found through partner and external portals, often with high quality, pedagogical contextual information intact. Repositories are not, however, usually described as web broadcast devices for their holdings. Providing multiple contextual views of educational resources where users look for them underscores the idea that digital repositories can be systems for the management, preservation, discovery and reuse of rich resources within a domain that can also be pushed out from a repository into homes and classrooms through multiple channels. This presentation reviews two interrelated methods and usage data that support the concept of â resource broadcastingâ from the NSDL data repository as a method that takes advantage of the natural context of resources to encourage their additional use as stand-alone objects outside of specific discipline-oriented portals.National Science Foundatio
Background independent exact renormalization group for conformally reduced gravity
Within the conformally reduced gravity model, where the metric is
parametrised by a function of the conformal factor , we keep
dependence on both the background and fluctuation fields, to local potential
approximation and respectively, making no other
approximation. Explicit appearances of the background metric are then dictated
by realising a remnant diffeomorphism invariance. The standard non-perturbative
Renormalization Group (RG) scale is inherently background dependent, which
we show in general forbids the existence of RG fixed points with respect to
. By utilising transformations that follow from combining the flow equations
with the modified split Ward identity, we uncover a unique background
independent notion of RG scale, . The corresponding RG flow equations
are then not only explicitly background independent along the entire RG flow
but also explicitly independent of the form of . In general is
forced to be scale dependent and needs to be renormalised, but if this is
avoided then -fixed points are allowed and furthermore they coincide with
-fixed points.Comment: 53 pages, broken reference correcte
- …