104 research outputs found

    Geometry Helps to Compare Persistence Diagrams

    Full text link
    Exploiting geometric structure to improve the asymptotic complexity of discrete assignment problems is a well-studied subject. In contrast, the practical advantages of using geometry for such problems have not been explored. We implement geometric variants of the Hopcroft--Karp algorithm for bottleneck matching (based on previous work by Efrat el al.) and of the auction algorithm by Bertsekas for Wasserstein distance computation. Both implementations use k-d trees to replace a linear scan with a geometric proximity query. Our interest in this problem stems from the desire to compute distances between persistence diagrams, a problem that comes up frequently in topological data analysis. We show that our geometric matching algorithms lead to a substantial performance gain, both in running time and in memory consumption, over their purely combinatorial counterparts. Moreover, our implementation significantly outperforms the only other implementation available for comparing persistence diagrams.Comment: 20 pages, 10 figures; extended version of paper published in ALENEX 201

    Quantifying Transversality by Measuring the Robustness of Intersections

    Full text link
    By definition, transverse intersections are stable under infinitesimal perturbations. Using persistent homology, we extend this notion to a measure. Given a space of perturbations, we assign to each homology class of the intersection its robustness, the magnitude of a perturbations in this space necessary to kill it, and prove that robustness is stable. Among the applications of this result is a stable notion of robustness for fixed points of continuous mappings and a statement of stability for contours of smooth mappings

    Robust spatial memory maps encoded in networks with transient connections

    Full text link
    The spiking activity of principal cells in mammalian hippocampus encodes an internalized neuronal representation of the ambient space---a cognitive map. Once learned, such a map enables the animal to navigate a given environment for a long period. However, the neuronal substrate that produces this map remains transient: the synaptic connections in the hippocampus and in the downstream neuronal networks never cease to form and to deteriorate at a rapid rate. How can the brain maintain a robust, reliable representation of space using a network that constantly changes its architecture? Here, we demonstrate, using novel Algebraic Topology techniques, that cognitive map's stability is a generic, emergent phenomenon. The model allows evaluating the effect produced by specific physiological parameters, e.g., the distribution of connections' decay times, on the properties of the cognitive map as a whole. It also points out that spatial memory deterioration caused by weakening or excessive loss of the synaptic connections may be compensated by simulating the neuronal activity. Lastly, the model explicates functional importance of the complementary learning systems for processing spatial information at different levels of spatiotemporal granularity, by establishing three complementary timescales at which spatial information unfolds. Thus, the model provides a principal insight into how can the brain develop a reliable representation of the world, learn and retain memories despite complex plasticity of the underlying networks and allows studying how instabilities and memory deterioration mechanisms may affect learning process.Comment: 24 pages, 10 figures, 4 supplementary figure

    Homology and Robustness of Level and Interlevel Sets

    Full text link
    Given a function f: \Xspace \to \Rspace on a topological space, we consider the preimages of intervals and their homology groups and show how to read the ranks of these groups from the extended persistence diagram of ff. In addition, we quantify the robustness of the homology classes under perturbations of ff using well groups, and we show how to read the ranks of these groups from the same extended persistence diagram. The special case \Xspace = \Rspace^3 has ramifications in the fields of medical imaging and scientific visualization

    Topological Optimization with Big Steps

    Full text link
    Using persistent homology to guide optimization has emerged as a novel application of topological data analysis. Existing methods treat persistence calculation as a black box and backpropagate gradients only onto the simplices involved in particular pairs. We show how the cycles and chains used in the persistence calculation can be used to prescribe gradients to larger subsets of the domain. In particular, we show that in a special case, which serves as a building block for general losses, the problem can be solved exactly in linear time. This relies on another contribution of this paper, which eliminates the need to examine a factorial number of permutations of simplices with the same value. We present empirical experiments that show the practical benefits of our algorithm: the number of steps required for the optimization is reduced by an order of magnitude.Comment: 10 pages, 10 figure

    Output-sensitive Computation of Generalized Persistence Diagrams for 2-filtrations

    Full text link
    When persistence diagrams are formalized as the Mobius inversion of the birth-death function, they naturally generalize to the multi-parameter setting and enjoy many of the key properties, such as stability, that we expect in applications. The direct definition in the 2-parameter setting, and the corresponding brute-force algorithm to compute them, require Ω(n4)\Omega(n^4) operations. But the size of the generalized persistence diagram, CC, can be as low as linear (and as high as cubic). We elucidate a connection between the 2-parameter and the ordinary 1-parameter settings, which allows us to design an output-sensitive algorithm, whose running time is in O(n3+Cn)O(n^3 + Cn)

    Parametrized Homology via Zigzag Persistence

    Get PDF
    This paper develops the idea of homology for 1-parameter families of topological spaces. We express parametrized homology as a collection of real intervals with each corresponding to a homological feature supported over that interval or, equivalently, as a persistence diagram. By defining persistence in terms of finite rectangle measures, we classify barcode intervals into four classes. Each of these conveys how the homological features perish at both ends of the interval over which they are defined

    Dualities in persistent (co)homology

    Full text link
    We consider sequences of absolute and relative homology and cohomology groups that arise naturally for a filtered cell complex. We establish algebraic relationships between their persistence modules, and show that they contain equivalent information. We explain how one can use the existing algorithm for persistent homology to process any of the four modules, and relate it to a recently introduced persistent cohomology algorithm. We present experimental evidence for the practical efficiency of the latter algorithm.Comment: 16 pages, 3 figures, submitted to the Inverse Problems special issue on Topological Data Analysi
    • …
    corecore