4,079 research outputs found
Current-induced magnetization reversal in a (Ga,Mn)As-based magnetic tunnel junction
We report current-induced magnetization reversal in a ferromagnetic
semiconductor-based magnetic tunnel junction (Ga,Mn)As/AlAs/(Ga,Mn)As prepared
by molecular beam epitaxy on a p-GaAs(001) substrate. A change in
magneto-resistance that is asymmetric with respect to the current direction is
found with the excitation current of 10^6 A/cm^2. Contributions of both
unpolarized and spin-polarized components are examined, and we conclude that
the partial magnetization reversal occurs in the (Ga,Mn)As layer of smaller
magnetization with the spin-polarized tunneling current of 10^5 A/cm^2.Comment: 13 pages, 3 figure
On kinetic energy stabilized superconductivity in cuprates
The possibility of kinetic energy driven superconductivity in cuprates as was
recently found in the model is discussed. We argue that the violation of
the virial theorem implied by this result is serious and means that the
description of superconductivity within the model is pathological.Comment: 3 pages, v2 includes additional reference
A Potent CD1d-binding Glycolipid for iNKT-Cell-based Therapy Against Human Breast Cancer
Background/Aim: Invariant natural killer T-cells (iNKT) stimulated by CD1d-binding glycolipids have been shown to exert antitumor effects by a number of studies in a mouse model. Breast cancer is a devastating disease, with different types of breast cancer recurring locally or distant as metastatic/advanced disease following initial treatment. The aim of this study was to examine the tumoricidal effect of a CD1d-binding glycolipid, called 7DW8-5, against a highly invasive human breast cancer cell line both in vitro and in vivo. Materials and Methods: Parental MDA-MB-231 cells and MDA-MB-231 cells transduced with human CD1d were labeled with carboxyfluorescein diacetate succinimidyl ester (CFSE), followed by loading with glycolipids. After co-culturing with human iNKT cells, the cells were permeabilized and stained with Alexa Flour 647-conjugated antibody to active caspase-3, and analyzed using a BD LSR II. For the in vivo tumoricidal effect, MDA-MB-231 cells transduced with human CD1d and luciferase genes were injected into the mammary fat pad of female NOD/SCID/IL2rγnull (NSG) mice, followed by the injection of human iNKT cells with or without 7DW8-5, and the levels of luminescence were analyzed with whole-body imaging. Results: Human iNKT cells could kill CD1d-expressing human breast cancer cells in vitro in the presence of 7DW8-5, but not α-GalCer. As for in vivo, the adoptive transfer of human iNKT cells into tumor-challenged NSG mice significantly inhibited the growth of CD1d+ MDA-MB-231 human breast cancer cells in the presence of 7DW8-5. Conclusion: CD1d-binding, glycolipid-based iNKT-cell therapy is suggested as a potent and effective treatment against breast cancer in humans
Fermi surfaces in general co-dimension and a new controlled non-trivial fixed point
Traditionally Fermi surfaces for problems in spatial dimensions have
dimensionality , i.e., codimension along which energy varies.
Situations with arise when the gapless fermionic excitations live at
isolated nodal points or lines. For weak short range interactions are
irrelevant at the non-interacting fixed point. Increasing interaction strength
can lead to phase transitions out of this Fermi liquid. We illustrate this by
studying the transition to superconductivity in a controlled
expansion near . The resulting non-trivial fixed point is shown to
describe a scale invariant theory that lives in effective space-time dimension
. Remarkably, the results can be reproduced by the more familiar
Hertz-Millis action for the bosonic superconducting order parameter even though
it lives in different space-time dimensions.Comment: 4 page
Diagrammatic perturbation theory and the pseudogap
We study a model of quasiparticles on a two-dimensional square lattice
coupled to Gaussian distributed dynamical fields. The model describes
quasiparticles coupled to spin or charge fluctuations and is solved by a Monte
Carlo sampling of the molecular field distributions. The non-perturbative
solution is compared to various approximations based on diagrammatic
perturbation theory. When the molecular field correlations are sufficiently
weak, the diagrammatic calculations capture the qualitative aspects of the
quasiparticle spectrum. For a range of model parameters near the magnetic
boundary, we find that the quasiparticle spectrum is qualitatively different
from that of a Fermi liquid in that it shows a double peak structure, and that
the diagrammatic approximations we consider fail to reproduce, even
qualitatively, the results of the Monte Carlo calculations. This suggests that
the pseudogap induced by a coupling to antiferromagnetic fluctuations and the
spin-splitting of the quasiparticle peak induced by a coupling to ferromagnetic
spin-fluctuations lie beyond diagrammatic perturbation theory
A factorization of a super-conformal map
A super-conformal map and a minimal surface are factored into a product of
two maps by modeling the Euclidean four-space and the complex Euclidean plane
on the set of all quaternions. One of these two maps is a holomorphic map or a
meromorphic map. These conformal maps adopt properties of a holomorphic
function or a meromorphic function. Analogs of the Liouville theorem, the
Schwarz lemma, the Schwarz-Pick theorem, the Weierstrass factorization theorem,
the Abel-Jacobi theorem, and a relation between zeros of a minimal surface and
branch points of a super-conformal map are obtained.Comment: 21 page
Frequency-dependent spin susceptibility in the two-dimensional Hubbard model
A Quantum Monte Carlo calculation of dynamical spin susceptibility in the
half-filled 2D Hubbard model is presented for temperature and an
intermediate on-site repulsion . Using the singular value decomposition
technique we succeed in analytically continuing the Matsubara Green's function
into the real frequency domain and in deriving the spectral representation for
the longitudinal and transverse spin susceptibility. The simulation results,
while contradicting the random-phase approximation prediction of
antiferromagnetic long-range order at this temperature, are in agreement with
an extension of a self-consistent renormalization approach of Moriya. The
static susceptibility calculated using this technique is qualitatively
consistent with the simulation results.Comment: 4 pages, Revtex, encoded figs.uu file with 3 figures enclose
Quantum critical dynamics of the two-dimensional Bose gas
The dilute, two-dimensional Bose gas exhibits a novel regime of relaxational
dynamics in the regime k_B T > |\mu| where T is the absolute temperature and
\mu is the chemical potential. This may also be interpreted as the quantum
criticality of the zero density quantum critical point at \mu=0. We present a
theory for this dynamics, to leading order in 1/\ln (\Lambda/ (k_B T)), where
\Lambda is a high energy cutoff. Although pairwise interactions between the
bosons are weak at low energy scales, the collective dynamics are strongly
coupled even when \ln (\Lambda/T) is large. We argue that the strong-coupling
effects can be isolated in an effective classical model, which is then solved
numerically. Applications to experiments on the gap-closing transition of spin
gap antiferromagnets in an applied field are presented.Comment: 9 pages, 10 figure
Mode-Coupling Model of Mott Gap Collapse in the Cuprates: Natural Phase Boundary for Quantum Critical Points
A simple antiferromagnetic approach to the Mott transition was recently shown
to provide a satisfactory explanation for the Mott gap collapse with doping
observed in photoemission experiments on electron-doped cuprates. Here this
approach is extended in a number of ways. RPA, mode coupling (via
self-consistent renormalization), and (to a limited extent) self-consistent
Born approximation calculations are compared to assess the roles of hot-spot
fluctuations and interaction with spin waves. When fluctuations are included,
the calculation satisfies the Mermin-Wagner theorem, and the mean-field gap and
transition temperature are replaced by pseudogap and onset temperature. The
model is in excellent agreement with experiments on the doping dependence of
both photoemission dispersion and magnetic properties. The magnetic phase
terminates in a quantum critical point (QCP), with a natural phase boundary for
this QCP arising from hot-spot physics.
Since the resulting T=0 antiferromagnetic transition is controlled by a
generalized Stoner factor, an ansatz is made of dividing the Stoner factor up
into a material-dependent part, the bare susceptibility and a
correlation-dependent part, the Hubbard U, which depends only weakly on doping.
From the material dependent part of the interaction, it is possible to
explain the striking differences between electron- and hole-doping, despite an
approximate symmetry in the doping of the QCP. The slower divergence of the
magnetic correlation length in hole doped cuprates may be an indication of more
Mott-like physics.Comment: This replaces cond-mat/0308469. 50 eps figures, revtex [Version 1 had
included old file
Au4V – Moment Stability and Spin Fluctuations in the Ordered Phase
Although neither gold nor vanadium generally possess a magnetic moment, the intermetallic compound Au4V is found to be ferromagnetic below 42K. In this paper we report the results of a muon spin relaxation study of the itinerant electron moment fluctuations in Au4V above the Curie temperature. The temperature dependence of the muon spin relaxation rate is found to be similar to that of the weak itinerant helimagnet, MnSi
- …