145 research outputs found
Structural Influence of the Anode Materials towards Efficient Zn Deposition/Dissolution in Aqueous Zn-Iodide Flow Batteries
Zinc-iodide flow battery (ZIFB) is one of the best potential candidates for future grid-scale energy storage, due to its eye-catching features of benign, high energy density and non-corrosive nature. However major investigations have not done yet on the negative electrode of this battery where the Zn deposition/dissolution mechanism takes place, which may have an impact on the battery performance. Herein, we have reported a comparative study of different carbon-based anodes which are conventional graphite felt, carbon paper and graphite foil. Single-cell charge/discharge performances among these three different anodes depicts that the cell with planar, hydrophilic graphite foil anode is showing the best energy efficiency and the lowest cell resistance among the carbonaceous electrodes. Zinc dissolution process during discharge process seems to be the bottleneck for having a stable cell, which was corroborated by the use of a Zn foil anode that shows excellent efficiencies along the successive cycles
Influence of In and Ga additives onto SnO2 inkjet-printed semiconductor
Tin oxide is a multifunctional semiconductor that offers excellent capabilities in a variety of applications such as solar cells, catalysis and chemical sensors. In this work, tin-based semiconductors have been obtained by means of solution synthesis and inkjet, and compared to similar materials with In and Ga as additives. The effect of different thermal treatments after deposition is also studied. n-Type behavior with saturation mobility N2 cm2 /Vs has been observed, and suitability as a semiconductor for thin-film transistors (TFTs) demonstrated with on/off ratios of more than 8 decades. Both In and InGa additives are shown to provide superior environmental stability, as well as significant change from depletion to enhancement operation modes in TFTs
Influence of mismatch on the defects in relaxed epitaxial InGaAs/GaAs(100) films grown by molecular beam epitaxy
Thick (∼3 μm) films of InxGa1−xAs grown on GaAs(100) substrates, across the whole composition range, have been examined by transmission electron microscopy and double‐crystal x‐ray diffraction. The results were compared with the observed growth mode of the material determined by in situ reflection high‐energy electron diffraction in the molecular beam epitaxy growth system. The quality of the material degraded noticeably for compositions up to x∼0.5 associated with an increased density of dislocations and stacking faults. In contrast, improvements in quality as x approached 1.0 were correlated with the introduction of an increasingly more regular array of edge dislocations
Suppressing water migration in aqueous Zn-iodide flow batteries by asymmetric electrolyte formulation
Zinc-iodide flow battery (ZIFB) is under research for the last years due to its suitability as a potential candidate for future electrochemical energy storage. During cycling, one of the biggest challenges that affect the reliable performance of ZIFB is the substantial water migration through the membrane because of differential molar concentrations between anolyte and catholyte that imbalance the osmotic pressures in each compartment. Considering the mass balances, herein we propose to equalize the total ionic concentration of electrolytes by the addition of extra solute into the compartment of lower ion concentration as a way to restrict the water crossover. Experimental validation of this electrolyte concentrations balancing strategy has been carried out by assessing the post-cycled electrolytes, and half-cell charged electrolytes, which confirms the efficient suppression of water migration from catholyte to anolyte. Besides, in-depth analysis of ions and water transport mechanism through Nafion 117 membrane confirms that solvated K+ ions of lower ionic radius compared to solvated Zn2+ ions, are the dominant migrating carrier. Therefore, the addition of extra KI solute is beneficial to suppress the major transport of large hydrated Zn2+ ions along with the higher amount of water. Finally, the improved ZIFB cell behaviour with enhanced electrical conductivity, discharge capacity, and voltage efficiency in the cell assembled with the electrolytes of balanced molar concentrations concludes our present study, proving that tuning the electrolytes concentrations is an effective way to suppress water migration as an appealing method in the prospect of upscaling ZIFB application
Adaptation of Cu(In, Ga)Se2 photovoltaics for full unbiased photocharge of integrated solar vanadium redox flow batteries
The integration of photovoltaics and vanadium redox flow batteries (VRFB) is a promising alternative for the direct conversion and storage of solar energy in a single device, considering their inherent higher energy density versus other redox pairs. However, this integration is not seamless unless the photovoltaic system is customized to the voltage needs of the battery, which unlike artificial photosynthesis, continuously increase with the state-of-charge. We have developed integrated solar VRFB with adapted low-cost Cu(In, Ga)Se2 modules of 3 and 4 series-connected cells (solar efficiency of mini-solar module 8.1%), and considering the voltage requirements (1.3-1.6V), we have evaluated the influence of the photovoltaic operation region on the final efficiency of the solar VRFB. Full unbiased photocharge under 1 Sun illumination has been achieved reaching high energy (77%), solar-to-charge (7.5%) and overall round trip energy conversion efficiencies (5.0%) excelling the values reported in literature for other solar VRFB, thus demonstrating the feasibility and intrinsic potential of adapting low-cost commercial photovoltaics to such energy storage systems.Peer ReviewedPostprint (author's final draft
Síntesis de capas de SiC en substrato de Si mediante implantación iónica
En este trabajo se investiga la síntesis de estructuras SiC/Si mediante implantación iónica de carbono en Si. Las implantaciones se han realizado a energías entre 25 y 300 keV y las dosis en el rango lO^^ylO^^ cm , manteniendo el substrato a temperatura ambiente o 500°C. Algunas estructuras han sido recocidas a 1150°C. Los resultados indican que implantando a temperatura ambiente se forma una capa de SiC amorfa y de composición gradual, que recristaliza formando precipitados de ß-SiC con orientaciones aleatorias después del recocido. Además se forma un capa superficial rica en carbono, debida a la difusión del carbono hacia la superficie durante la implantación, y que desaparece con el recocido. Implantando a 500°C se forma directamente una capa con una muy alta densidad de precipitados de ß-SiC orientados preferencialmente con la matriz de silicio. Dada la estabilidad térmica y química de dicha capa se han realizado membranas de SiC mediante técnicas fotolitográficas y ataque químico selectivo, cuya rugosidad superficial es inferior a 6 nm. Estas membranas muestran unos gradientes de tensiones residuales, que prácticamente desaparecen después del recocido. Los resultados confirman la potencialidad de la implantación iónica para la formación de estructuras microme-cánicas de SiC sobre Si
Adaptation of Cu(In, Ga)Se2 photovoltaics for full unbiased photocharge of integrated solar vanadium redox flow batteries
The integration of photovoltaics and vanadium redox flow batteries (VRFBs) is a promising alternative for the direct conversion and storage of solar energy in a single device, considering their inherent higher energy density versus other redox pairs. However, this integration is not seamless unless the photovoltaic system is customized to the voltage needs of the battery, which unlike artificial photosynthesis, continuously increase with the state-of-charge. We have developed an integrated solar VRFB with adapted low-cost Cu(In, Ga)Se2 modules of 3 and 4 series-connected cells (solar efficiency of mini-solar module 8.1%), and considering the voltage requirements (1.3-1.6 V), we have evaluated the influence of the photovoltaic operation region on the final efficiency of the solar VRFB. Full unbiased photocharge under 1 Sun illumination has been achieved resulting in high energy (77%), solar-to-charge (7.5%) and overall round trip energy conversion efficiencies (5.0%) exceeding the values reported in the literature for other solar VRFBs, thus demonstrating the feasibility and intrinsic potential of adapting low-cost commercial photovoltaics to such energy storage systems
Caracterización estructural de capas epitaxiadas de InGaAs/InAlAs crecidas sobre substratos (111) de InP
Se ha analizado por microscopía electrónica en transmisión (TEM) la estructura de transistores HEMT basados en un pozo cuántico tensionado de InGaAs/InAlAs crecido sobre un sustrato {111} de InP. Se han observado dislocaciones filiformes y defectos planares que cruzan la capa superior hacia la superficie, así como maclas paralelas a la interficie y grandes complejos defectivos en forma de V que se nuclean unos pocos nanometres por encima de la interficie entre el pozo cuántico y la capa superior que lo confina. La estructura de los defectos es muy diferente de la observada en heteroestructuras similares crecidas sobre sustratos {100}, hecho que sugiere que hay que tener en cuenta consideraciones sobre el proceso mismo de nucleación de los defectos junto con las convencionales relacionadas con el desajuste de redes
Nucleation and growth of GaN nanorods on Si (111) surfaces by plasma-assisted molecular beam epitaxy - The influence of Si- and Mg-doping
The self-assembled growth of GaN nanorods on Si (111) substrates by plasma-assisted molecular beam epitaxy under nitrogen-rich conditions is investigated. An amorphous silicon nitride layer is formed in the initial stage of growth that prevents the formation of a GaN wetting layer. The nucleation time was found to be strongly influenced by the substrate temperature and was more than 30 min for the applied growth conditions. The observed tapering and reduced length of silicon-doped nanorods is explained by enhanced nucleation on nonpolar facets and proves Ga-adatom diffusion on nanorod sidewalls as one contribution to the axial growth. The presence of Mg leads to an increased radial growth rate with a simultaneous decrease of the nanorod length and reduces the nucleation time for high Mg concentrations
Direct Operando Visualization of Metal Support Interactions Induced by Hydrogen Spillover During CO2 Hydrogenation
The understanding of catalyst active sites is a fundamental challenge for the future rational design of optimized and bespoke catalysts. For instance, the partial reduction of Ce4+ surface sites to Ce3+ and the formation of oxygen vacancies are critical for CO2 hydrogenation, CO oxidation, and the water gas shift reaction. Furthermore, metal nanoparticles, the reducible support, and metal support interactions are prone to evolve under reaction conditions; therefore a catalyst structure must be characterized under operando conditions to identify active states and deduce structure-activity relationships. In the present work, temperature-induced morphological and chemical changes in Ni nanoparticle-decorated mesoporous CeO2 by means of in situ quantitative multimode electron tomography and in situ heating electron energy loss spectroscopy, respectively, are investigated. Moreover, operando electron energy loss spectroscopy is employed using a windowed gas cell and reveals the role of Ni-induced hydrogen spillover on active Ce3+ site formation and enhancement of the overall catalytic performance
- …