129 research outputs found

    Simple and Optimal Randomized Fault-Tolerant Rumor Spreading

    Full text link
    We revisit the classic problem of spreading a piece of information in a group of nn fully connected processors. By suitably adding a small dose of randomness to the protocol of Gasienic and Pelc (1996), we derive for the first time protocols that (i) use a linear number of messages, (ii) are correct even when an arbitrary number of adversarially chosen processors does not participate in the process, and (iii) with high probability have the asymptotically optimal runtime of O(logn)O(\log n) when at least an arbitrarily small constant fraction of the processors are working. In addition, our protocols do not require that the system is synchronized nor that all processors are simultaneously woken up at time zero, they are fully based on push-operations, and they do not need an a priori estimate on the number of failed nodes. Our protocols thus overcome the typical disadvantages of the two known approaches, algorithms based on random gossip (typically needing a large number of messages due to their unorganized nature) and algorithms based on fair workload splitting (which are either not {time-efficient} or require intricate preprocessing steps plus synchronization).Comment: This is the author-generated version of a paper which is to appear in Distributed Computing, Springer, DOI: 10.1007/s00446-014-0238-z It is available online from http://link.springer.com/article/10.1007/s00446-014-0238-z This version contains some new results (Section 6

    Sign rank versus VC dimension

    Full text link
    This work studies the maximum possible sign rank of N×NN \times N sign matrices with a given VC dimension dd. For d=1d=1, this maximum is {three}. For d=2d=2, this maximum is Θ~(N1/2)\tilde{\Theta}(N^{1/2}). For d>2d >2, similar but slightly less accurate statements hold. {The lower bounds improve over previous ones by Ben-David et al., and the upper bounds are novel.} The lower bounds are obtained by probabilistic constructions, using a theorem of Warren in real algebraic topology. The upper bounds are obtained using a result of Welzl about spanning trees with low stabbing number, and using the moment curve. The upper bound technique is also used to: (i) provide estimates on the number of classes of a given VC dimension, and the number of maximum classes of a given VC dimension -- answering a question of Frankl from '89, and (ii) design an efficient algorithm that provides an O(N/log(N))O(N/\log(N)) multiplicative approximation for the sign rank. We also observe a general connection between sign rank and spectral gaps which is based on Forster's argument. Consider the N×NN \times N adjacency matrix of a Δ\Delta regular graph with a second eigenvalue of absolute value λ\lambda and ΔN/2\Delta \leq N/2. We show that the sign rank of the signed version of this matrix is at least Δ/λ\Delta/\lambda. We use this connection to prove the existence of a maximum class C{±1}NC\subseteq\{\pm 1\}^N with VC dimension 22 and sign rank Θ~(N1/2)\tilde{\Theta}(N^{1/2}). This answers a question of Ben-David et al.~regarding the sign rank of large VC classes. We also describe limitations of this approach, in the spirit of the Alon-Boppana theorem. We further describe connections to communication complexity, geometry, learning theory, and combinatorics.Comment: 33 pages. This is a revised version of the paper "Sign rank versus VC dimension". Additional results in this version: (i) Estimates on the number of maximum VC classes (answering a question of Frankl from '89). (ii) Estimates on the sign rank of large VC classes (answering a question of Ben-David et al. from '03). (iii) A discussion on the computational complexity of computing the sign-ran

    Private Learning Implies Online Learning: An Efficient Reduction

    Full text link
    We study the relationship between the notions of differentially private learning and online learning in games. Several recent works have shown that differentially private learning implies online learning, but an open problem of Neel, Roth, and Wu \cite{NeelAaronRoth2018} asks whether this implication is {\it efficient}. Specifically, does an efficient differentially private learner imply an efficient online learner? In this paper we resolve this open question in the context of pure differential privacy. We derive an efficient black-box reduction from differentially private learning to online learning from expert advice

    An adaptive nearest neighbor rule for classification

    Full text link
    We introduce a variant of the kk-nearest neighbor classifier in which kk is chosen adaptively for each query, rather than supplied as a parameter. The choice of kk depends on properties of each neighborhood, and therefore may significantly vary between different points. (For example, the algorithm will use larger kk for predicting the labels of points in noisy regions.) We provide theory and experiments that demonstrate that the algorithm performs comparably to, and sometimes better than, kk-NN with an optimal choice of kk. In particular, we derive bounds on the convergence rates of our classifier that depend on a local quantity we call the `advantage' which is significantly weaker than the Lipschitz conditions used in previous convergence rate proofs. These generalization bounds hinge on a variant of the seminal Uniform Convergence Theorem due to Vapnik and Chervonenkis; this variant concerns conditional probabilities and may be of independent interest
    corecore