6 research outputs found
Recommended from our members
Enhancing the student learning experience through memes
Meme-making is an effective method for engaging students and enhancing the learning environment. Memes are a social media cultural phenomenon that the majority of those in Higher Education are exposed to on an almost daily occurrence. This research examined the use of meme-making within the forensic sciences to allow students to reflect on their knowledge. Students studying modules in forensic science across six universities in the UK and USA participated in the study. At the end of a teaching session, students produced a meme (using Meme Generator) to reflect on what they had learned; memes were then shared with the class anonymously via Padlet. This allowed all class members to see and engage with the memes created. At the end of the activity students were anonymously surveyed on their experience using Microsoft Forms and analysis of the results were undertaken using SPSS software.Meme-making was found to be an inclusive learning activity with no limitations, including age (part-time, distance learning and visually impaired students were not part of the study parameters). Results showed that not only did students find the practice fun, but it also helped with the retention of the class content suggesting that the meme-making process is an effective way to enhance the learning environment while engaging students.Student feedback suggests that to maximise participation the educator should stress reflection and learning as the key purpose of generating a meme, rather than being witty or entertaining. Further that the forensic science educator should be mindful of selecting appropriate subject matter for this often-humorous activity.<br/
Collaborative pedagogy:meme-based reflective practice
This session describes a most enjoyable collaborative project in forensic science education, where academics from various institutions joined forces to explore meme making as a pedagogical tool. Students were empowered to engage and reflect on course content by the integration of meme making into taught classes. The collaborative journey of the researchers will be explored whilst showcasing this simple yet effective method for improved academic engagement. The session incorporates an overview of meme making and its application in enhancing student learning. It is supplemented by student-generated memes and survey data which display its effectiveness. Attendees will engage in meme creation to experience the amusement of a class who share in this collaborative learning experience. Allowing students to enjoy those Memes made by the class creates a sense of collective ownership, to encourage a more cohesive and bonded learning community. Collaboration, therefore, enriched both the research process and the understanding of the educational outcomes
Enhancing the student learning experience through memes
Meme-making is an effective method for engaging students and enhancing the learning environment. Memes are a social media cultural phenomenon that the majority of those in Higher Education are exposed to on an almost daily occurrence. This research examined the use of meme-making within the forensic sciences to allow students to reflect on their knowledge. Students studying modules in forensic science across six universities in the UK and USA participated in the study. At the end of a teaching session, students produced a meme (using Meme Generator) to reflect on what they had learned; memes were then shared with the class anonymously via Padlet. This allowed all class members to see and engage with the memes created. At the end of the activity students were anonymously surveyed on their experience using Microsoft Forms and analysis of the results were undertaken using SPSS software. Meme-making was found to be an inclusive learning activity with no limitations, including age (part-time, distance learning and visually impaired students were not part of the study parameters). Results showed that not only did students find the practice fun, but it also helped with the retention of the class content suggesting that the meme-making process is an effective way to enhance the learning environment while engaging students. Student feedback suggests that to maximise participation the educator should stress reflection and learning as the key purpose of generating a meme, rather than being witty or entertaining. The forensic science educator should be mindful of selecting appropriate subject matter for this often-humorous activity
Big Data in Chemical Toxicity Research: The Use of High-Throughput Screening Assays To Identify Potential Toxicants
Unraveling the functional dark matter through global metagenomics
Metagenomes encode an enormous diversity of proteins, reflecting a multiplicity of functions and activities1,2. Exploration of this vast sequence space has been limited to a comparative analysis against reference microbial genomes and protein families derived from those genomes. Here, to examine the scale of yet untapped functional diversity beyond what is currently possible through the lens of reference genomes, we develop a computational approach to generate reference-free protein families from the sequence space in metagenomes. We analyse 26,931 metagenomes and identify 1.17 billion protein sequences longer than 35 amino acids with no similarity to any sequences from 102,491 reference genomes or the Pfam database3. Using massively parallel graph-based clustering, we group these proteins into 106,198 novel sequence clusters with more than 100 members, doubling the number of protein families obtained from the reference genomes clustered using the same approach. We annotate these families on the basis of their taxonomic, habitat, geographical and gene neighbourhood distributions and, where sufficient sequence diversity is available, predict protein three-dimensional models, revealing novel structures. Overall, our results uncover an enormously diverse functional space, highlighting the importance of further exploring the microbial functional dark matter