13 research outputs found

    Historical biogeography of the neotropical Diaptomidae (Crustacea:Copepoda)

    Get PDF
    Introduction: Diaptomid copepods are prevalent throughout continental waters of the Neotropics, yet little is\ud known about their biogeography. In this study we investigate the main biogeographical patterns among the\ud neotropical freshwater diaptomid copepods using Parsimony Analysis of Endemicity (PAE) based on species records\ud within ecoregions. In addition, we assess potential environmental correlates and limits for species richness.\ud Results: PAE was efficient in identifying general areas of endemism. Moreover, only ecoregion area showed a\ud significant correlation with diaptomid species richness, although climatic factors were shown to provide possible\ud upper limits to the species richness in a given ecoregion.\ud Conclusion: The main patterns of endemism in neotropical freshwater diaptomid copepods are highly congruent\ud with other freshwater taxa, suggesting a strong historical signal in determining the distribution of the family in the\ud Neotropics.We would like to thank to Professor Edinaldo Nelson dos Santos Silva (INPA, Brazil) for useful insight during this study. We also thank FAPESP (process 2008/02015-7, 2009/00014-6, 2011/18358-3) for financial support to GPN; and CNPq for financial support to DP (process 141702/2006-0) and MRP (process 304897/2012-4)

    Composition, Spatial Characteristics, and Prognostic Significance of Myeloid Cell Infiltration in Pancreatic Cancer

    Get PDF
    AbstractPurpose: Although abundant myeloid cell populations in the pancreatic ductal adenocarcinoma (PDAC) microenvironment have been postulated to suppress antitumor immunity, the composition of these populations, their spatial locations, and how they relate to patient outcomes are poorly understood.Experimental Design: To generate spatially resolved tumor and immune cell data at single-cell resolution, we developed two quantitative multiplex immunofluorescence assays to interrogate myeloid cells (CD15, CD14, ARG1, CD33, HLA-DR) and macrophages [CD68, CD163, CD86, IFN regulatory factor 5, MRC1 (CD206)] in the PDAC tumor microenvironment. Spatial point pattern analyses were conducted to assess the degree of colocalization between tumor cells and immune cells. Multivariable-adjusted Cox proportional hazards regression was used to assess associations with patient outcomes.Results: In a multi-institutional cohort of 305 primary PDAC resection specimens, myeloid cells were abundant, enriched within stromal regions, highly heterogeneous across tumors, and differed by somatic genotype. High densities of CD15⁺ARG1⁺ immunosuppressive granulocytic cells and M2-polarized macrophages were associated with worse patient survival. Moreover, beyond cell density, closer proximity of M2-polarized macrophages to tumor cells was strongly associated with disease-free survival, revealing the clinical significance and biologic importance of immune cell localization within tumor areas.Conclusions: A diverse set of myeloid cells are present within the PDAC tumor microenvironment and are distributed heterogeneously across patient tumors. Not only the densities but also the spatial locations of myeloid immune cells are associated with patient outcomes, highlighting the potential role of spatially resolved myeloid cell subtypes as quantitative biomarkers for PDAC prognosis and therapy.Abstract Purpose: Although abundant myeloid cell populations in the pancreatic ductal adenocarcinoma (PDAC) microenvironment have been postulated to suppress antitumor immunity, the composition of these populations, their spatial locations, and how they relate to patient outcomes are poorly understood. Experimental Design: To generate spatially resolved tumor and immune cell data at single-cell resolution, we developed two quantitative multiplex immunofluorescence assays to interrogate myeloid cells (CD15, CD14, ARG1, CD33, HLA-DR) and macrophages [CD68, CD163, CD86, IFN regulatory factor 5, MRC1 (CD206)] in the PDAC tumor microenvironment. Spatial point pattern analyses were conducted to assess the degree of colocalization between tumor cells and immune cells. Multivariable-adjusted Cox proportional hazards regression was used to assess associations with patient outcomes. Results: In a multi-institutional cohort of 305 primary PDAC resection specimens, myeloid cells were abundant, enriched within stromal regions, highly heterogeneous across tumors, and differed by somatic genotype. High densities of CD15⁺ARG1⁺ immunosuppressive granulocytic cells and M2-polarized macrophages were associated with worse patient survival. Moreover, beyond cell density, closer proximity of M2-polarized macrophages to tumor cells was strongly associated with disease-free survival, revealing the clinical significance and biologic importance of immune cell localization within tumor areas. Conclusions: A diverse set of myeloid cells are present within the PDAC tumor microenvironment and are distributed heterogeneously across patient tumors. Not only the densities but also the spatial locations of myeloid immune cells are associated with patient outcomes, highlighting the potential role of spatially resolved myeloid cell subtypes as quantitative biomarkers for PDAC prognosis and therapy

    Catálogo Taxonômico da Fauna do Brasil: setting the baseline knowledge on the animal diversity in Brazil

    Get PDF
    The limited temporal completeness and taxonomic accuracy of species lists, made available in a traditional manner in scientific publications, has always represented a problem. These lists are invariably limited to a few taxonomic groups and do not represent up-to-date knowledge of all species and classifications. In this context, the Brazilian megadiverse fauna is no exception, and the Catálogo Taxonômico da Fauna do Brasil (CTFB) (http://fauna.jbrj.gov.br/), made public in 2015, represents a database on biodiversity anchored on a list of valid and expertly recognized scientific names of animals in Brazil. The CTFB is updated in near real time by a team of more than 800 specialists. By January 1, 2024, the CTFB compiled 133,691 nominal species, with 125,138 that were considered valid. Most of the valid species were arthropods (82.3%, with more than 102,000 species) and chordates (7.69%, with over 11,000 species). These taxa were followed by a cluster composed of Mollusca (3,567 species), Platyhelminthes (2,292 species), Annelida (1,833 species), and Nematoda (1,447 species). All remaining groups had less than 1,000 species reported in Brazil, with Cnidaria (831 species), Porifera (628 species), Rotifera (606 species), and Bryozoa (520 species) representing those with more than 500 species. Analysis of the CTFB database can facilitate and direct efforts towards the discovery of new species in Brazil, but it is also fundamental in providing the best available list of valid nominal species to users, including those in science, health, conservation efforts, and any initiative involving animals. The importance of the CTFB is evidenced by the elevated number of citations in the scientific literature in diverse areas of biology, law, anthropology, education, forensic science, and veterinary science, among others

    MicroRNA-100 acts as a tumor suppressor in human bladder carcinoma 5637 cells

    No full text
    Bladder carcinoma is one of the most common tumors in the world and, despite the therapy currently available, most of the patients relapse. Better understanding of the factors involved in disease pathogenesis would provide insights for the development of more effective strategies in treatment. Recently, differential miRNA expression profiles in bladder urothelial carcinomas identified miR-100 down-regulation and miR-708 up-regulation among the most common alterations, although the possible influence of these miRNAs in the control of basic mechanisms in bladder tumors has not been addressed. In this context, the present study aimed to evaluate the in vitro effects of miR-100 forced expression and miR-708 inhibition in the bladder carcinoma cell line 5637. Our results showed that overexpression of miR-100 significantly inhibited growth when compared to controls at both times tested (72 and 96 hours, p<0.01) with a maximum effect at 72 hours reducing proliferation in 29.6 %. Conversely, no effects on cell growth were observed after inhibition of miR-708. MiR-100 also reduced colony formation capacity of 5637 cells by 24.4%. No alterations in cell cycle progression or apoptosis induction were observed. The effects of miR-100 on growth and clonogenicity capacity in 5637 cells evince a possible role of this miRNA in bladder carcinoma pathogenesis. Further studies are necessary to corroborate our findings and examine the potential use of this microRNA in future therapeutic interventions.Department of Genetics Faculty of Medicine of Ribeirão Preto University of São PauloDivision of Pediatric Oncology Department of Pediatrics Faculty of Medicine of Ribeirão Preto University of São PauloDepartment of Pathology Faculty of Medicine of Botucatu São Paulo State University - UNESPDepartment of Pathology Faculty of Medicine of Botucatu São Paulo State University - UNES

    MicroRNA-100 Acts as a Tumor Suppressor in Human Bladder Carcinoma 5637 Cells

    No full text
    Bladder carcinoma is one of the most common tumors in the world and, despite the therapy currently available, most of the patients relapse. Better understanding of the factors involved in disease pathogenesis would provide insights for the development of more effective strategies in treatment. Recently, differential miRNA expression profiles in bladder urothelial carcinomas identified miR-100 down-regulation and miR-708 up-regulation among the most common alterations, although the possible influence of these miRNAs in the control of basic mechanisms in bladder tumors has not been addressed. In this context, the present study aimed to evaluate the in vitro effects of miR-100 forced expression and miR-708 inhibition in the bladder carcinoma cell line 5637. Our results showed that overexpression of miR-100 significantly inhibited growth when compared to controls at both times tested (72 and 96 hours, p<0.01) with a maximum effect at 72 hours reducing proliferation in 29.6 %. Conversely, no effects on cell growth were observed after inhibition of miR-708. MiR-100 also reduced colony formation capacity of 5637 cells by 24.4%. No alterations in cell cycle progression or apoptosis induction were observed. The effects of miR-100 on growth and clonogenicity capacity in 5637 cells evince a possible role of this miRNA in bladder carcinoma pathogenesis. Further studies are necessary to corroborate our findings and examine the potential use of this microRNA in future therapeutic interventions.Univ São Paulo, Div Pediat Oncol, Dept Pediat, Fac Med Ribeirao Preto, BR-05508 São Paulo, BrazilUniv São Paulo, Dept Genet, BR-05508 São Paulo, BrazilSão Paulo State Univ UNESP, Dept Pathol, Fac Med Botucatu, São Paulo, BrazilSão Paulo State Univ UNESP, Dept Pathol, Fac Med Botucatu, São Paulo, Brazi

    MicroRNA-100 Acts as a Tumor Suppressor in Human Bladder Carcinoma 5637 Cells

    No full text
    Bladder carcinoma is one of the most common tumors in the world and, despite the therapy currently available, most of the patients relapse. Better understanding of the factors involved in disease pathogenesis would provide insights for the development of more effective strategies in treatment. Recently, differential miRNA expression profiles in bladder urothelial carcinomas identified miR-100 down-regulation and miR-708 up-regulation among the most common alterations, although the possible influence of these miRNAs in the control of basic mechanisms in bladder tumors has not been addressed. In this context, the present study aimed to evaluate the in vitro effects of miR-100 forced expression and miR-708 inhibition in the bladder carcinoma cell line 5637. Our results showed that overexpression of miR-100 significantly inhibited growth when compared to controls at both times tested (72 and 96 hours, p<0.01) with a maximum effect at 72 hours reducing proliferation in 29.6 %. Conversely, no effects on cell growth were observed after inhibition of miR-708. MiR-100 also reduced colony formation capacity of 5637 cells by 24.4%. No alterations in cell cycle progression or apoptosis induction were observed. The effects of miR-100 on growth and clonogenicity capacity in 5637 cells evince a possible role of this miRNA in bladder carcinoma pathogenesis. Further studies are necessary to corroborate our findings and examine the potential use of this microRNA in future therapeutic interventions

    Cytostatic in vitro Effects of DTCM-Glutarimide on Bladder Carcinoma Cells

    Get PDF
    Bladder cancer is a common malignancy worldwide. Despite the increased use of cisplatin-based combination therapy, the outcomes for patients with advanced disease remain poor. Recently, altered activation of the PI3K/Akt/mTOR pathway has been associated with reduced patient survival and advanced stage of bladder cancer, making its upstream or downstream components attractive targets for therapeutic intervention. In the present study, we showed that treatment with DTCM-glutaramide, a piperidine that targets PDK1, results in reduced proliferation, diminished cell migration and G1 arrest in 5637 and T24 bladder carcinoma cells. Conversely, no apoptosis, necrosis or autophagy were detected after treatment, suggesting that reduced cell numbers in vitro are a result of diminished proliferation rather than cell death. Furthermore previous exposure to 10 mu g/ml DTCM-glutarimide sensitized both cell lines to ionizing radiation. Although more studies are needed to corroborate our findings, our results indicate that PDK1 may be useful as a therapeutic target to prevent progression and abnormal tissue dissemination of urothelial carcinomas
    corecore