99 research outputs found
From ocean sprawl to blue-green infrastructure:A UK perspective on an issue of global significance
Artificial structures are proliferating in the marine environment, resulting in ‘ocean sprawl’. In light of the potential environmental impacts of this, such as habitat loss and alteration, it is becoming increasingly important to incorporate ecologically-sensitive design into artificial marine structures. The principles of eco-engineering and green infrastructure are embedded in urban planning practice for terrestrial and freshwater development projects. In marine planning, however, eco-engineering of blue-green infrastructure remains an emerging concept. This note provides a UK perspective on the progress towards uptake of eco-engineering approaches for enhancing biodiversity on artificial marine structures. We emphasise that, despite a clear ‘policy pull’ to incorporate biodiversity enhancements in marine structures, a range of proof-of-concept evidence that it is possible to achieve, and strong cross-sectoral stakeholder support, there are still few examples of truly and purposefullydesigned blue-green artificial structures in the UK. We discuss the barriers that remain and propose a strategy towards effective implementation. Our strategy outlines a step-wise approach to: (1) strengthening the evidence base for what enhancements can be achieved in different scenarios; (2) improving clarity on the predicted benefits and associated costs of enhancements; (3) packaging the evidence in a useful form to support planning and decision-making; and (4) encouraging implementation as routine practice. Given that ocean sprawl is a growing problem globally, the perspective presented here provides valuable insight and lessons for other nations at their various states of progress towards this same goal
Multiple-scale interactions structure macroinvertebrate assemblages associated with kelp understory algae
Aim: Kelp forests provide habitat and food that supports a high diversity of flora and fauna. While numerous studies have described macroinvertebrates associated with kelp blades, stipes and holdfasts, a key kelp forest microhabitat, epilithic understory algae, remains poorly studied. Here, we used a macroecological approach and artificial seaweed units (ASUs) to explore the effects of ocean climate, wave exposure and habitat complexity on understory algal associated macroinvertebrate assemblages
within Laminaria hyperborea forests in the United Kingdom.
Location: 9° latitudinal gradient along the north and west coasts of the United Kingdom. Methods: Replicate ASUs comprising four different habitat complexities were deployed under mature L. hyperborea at 2 sites (along a wave exposure gradient, separated by km) within each of 4 locations (separated by 100s km) nested within two regions (warm and cold, spanning 9° of latitude). After 5 months in situ, the ASUs were collected and macroinvertebrates were identified to species level and enumerated. Results: Habitat complexity and wave exposure both influenced macroinvertebrate
assemblage structure, but results also showed clear effects of ocean climate, with macroinvertebrate assemblages differing between warm and cool regions, primarily
driven by higher diversity and evenness in the warmer region and greater abundance in the cooler region.
Main conclusions: Predicted warming and a shift to less complex turf-forming algal assemblages are likely to alter the structure of macroinvertebrate assemblages associated with understory algae, with potential implications for kelp forest food web dynamics
A global dataset of seaweed net primary productivity
Net primary productivity (NPP) plays a pivotal role in the global carbon balance but estimating the NPP of underwater habitats remains a challenging task. Seaweeds (marine macroalgae) form the largest and most productive underwater vegetated habitat on Earth. Yet, little is known about the distribution of their NPP at large spatial scales, despite more than 70 years of local-scale studies being scattered throughout the literature. We present a global dataset containing NPP records for 246 seaweed taxa at 429 individual sites distributed on all continents from the intertidal to 55 m depth. All records are standardized to annual aerial carbon production (g C m(−2) yr(−1)) and are accompanied by detailed taxonomic and methodological information. The dataset presented here provides a basis for local, regional and global comparative studies of the NPP of underwater vegetation and is pivotal for achieving a better understanding of the role seaweeds play in the global coastal carbon cycle
Evidence for different thermal ecotypes in range centre and trailing edge kelp populations
Determining and predicting species’ responses to climate change is a fundamental goal of contemporary ecology. When interpreting responses to warming species are often treated as a single physiological unit with a single species-wide thermal niche. This assumes that trailing edge populations are most vulnerable to warming, as it is here where a species’ thermal niche will be exceeded first. Local adaptation can, however, result in narrower thermal tolerance limits for local populations, so that similar relative increases in temperature can exceed local niches throughout a species range. We used a combination of common garden temperature heat-shock experiments (8–32 °C) and population genetics (microsatellites) to identify thermal ecotypes of northeast Atlantic range centre and trailing edge populations of the habitat-forming kelp, Laminaria digitata. Using upregulation of hsp70 as an indicator of thermal stress, we found that trailing edge populations were better equipped to tolerate acute temperature shocks. This pattern was consistent across seasons, indicating that between-population variability is fixed. High genetic structuring was also observed, with range centre and trailing edge populations representing highly distinct clusters with little gene flow between regions. Taken together, this suggests the presence of distinct thermal ecotypes for L. digitata, which may mean responses to future warming are more complex than linear range contractions. © 2019 Elsevier B.V
Ecological performance differs between range centre and trailing edge populations of a cold-water kelp:implications for estimating net primary productivity
Kelp forests are extensive, widely distributed and highly productive. However, despite their importance, reliable estimates of net primary productivity (NPP) are currently unknown for most species and regions. In particular, how performance and subsequent NPP change throughout a species range is lacking. Here, we attempted to resolve this by examining growth and performance of the boreal kelp, Laminaria digitata, from range centre and trailing edge regions in the United Kingdom. During the peak growth season (March/April), range-centre individuals were up to three times heavier and accumulated biomass twice as fast as their trailing-edge counterparts. This was not apparent during the reduced growth season (August/September), when populations within both regions had similar biomass profiles. In total, annual NPP estimates were considerably lower for trailing-edge (181±34 g C m−2 year−1) compared to range-centre (344±33 g C m−2 year−1) populations. Our first-order
UK estimates of total standing stock and NPP for L. digitata suggest this species makes a significant contribution to coastal carbon cycling. Further work determining the ultimate fate of this organic matter is needed to understand the overall contribution of kelp populations to regional and global carbon cycles. Nevertheless, we highlight the need for large-scale sampling across multiple populations and latitudes to accurately evaluate kelp species’ contributions to coastal carbon cycling
Linking environmental variables with regional-scale variability in ecological structure and standing stock of carbon within UK kelp forests
Kelp forests represent some of the most productive and diverse habitats on Earth. Understanding drivers of ecological patterns at large spatial scales is critical for effective management and conservation of marine habitats. We surveyed kelp forests dominated by Laminaria hyperborea (Gunnerus) Foslie 1884 across 9° latitude and \u3e1000 km of coastline and measured a number of physical parameters at multiple scales to link ecological structure and standing stock of carbon with environmental variables. Kelp density, biomass, morphology and age were generally greater in exposed sites within regions, highlighting the importance of wave exposure in structuring L. hyperborea populations. At the regional scale, wave-exposed kelp canopies in the cooler regions (the north and west of Scotland) were greater in biomass, height and age than in warmer regions (southwest Wales and England). The range and maximal values of estimated standing stock of carbon contained within kelp forests was greater than in historical studies, suggesting that this ecosystem property may have been previously undervalued. Kelp canopy density was positively correlated with large-scale wave fetch and fine-scale water motion, whereas kelp canopy biomass and the standing stock of carbon were positively correlated with large-scale wave fetch and light levels and negatively correlated with temperature. As light availability and summer temperature were important drivers of kelp forest biomass, effective management of human activities that may affect coastal water quality is necessary to maintain ecosystem functioning, while increased temperatures related to anthropogenic climate change may impact the structure of kelp forests and the ecosystem services they provide
Habitat structure shapes temperate reef assemblages across regional environmental gradients
Intertidal artificial habitats are proliferating, but are generally simpler in structure and host lower biodiversity than natural rocky reefs. Eco-engineering aims to enhance the biodiversity of coastal infrastructure, often through physical structural modifications that mimic topographic properties of natural shores. Relationships between biotic assemblages and structural properties of natural and artificial reefs have been extensively studied at sampling scales of up to 1 m2. But evidence that quantified local structural variation has an appreciable influence on biotic assemblages, at a shore-wide scale across regional environmental gradients, is lacking. Here we addressed this knowledge gap with an observational study at 32 natural and artificial intertidal reef sites in Wales, UK. We used multivariate community analysis and permutation tests to examine associations between local physical structure, regional environmental variables and sessile biotic assemblages. A potential influence of local habitat structure on assemblage composition was evident across regional-scale environmental gradients. Compared to natural sites, artificial reefs had lower taxonomic richness, distinct and more variable assemblage composition, and different physical structure. After removing the effect of habitat (natural or artificial), canonical correspondence analysis showed that environmental variables (wave exposure, sea surface temperature and salinity variation), along with two metrics of physical structure (standard deviation in log-transformed detrended roughness and skewness of surface verticality, both at 0.5 m scale), explained 40 % of the variation in assemblage composition among sites. The two structural metrics independently explained 14.5 % of the variation. Associations identified between individual taxa and environmental variables indicated that sites with a higher proportion of horizontal surfaces hosted more canopy macroalgae, which in turn support other algae and invertebrates. Our findings provide evidence to inform scaling-up of structural eco-engineering interventions from experimental contexts to enhance the biodiversity of coastal infrastructure across regional extents
- …