10 research outputs found

    Additional file 1 of Quantitative analysis of vitamin D using m/MALDI-TOF mass spectrometry based on a parylene matrix chip

    No full text
    Additional file 1. Fig. S1. Analysis of the electrochemical property of parylene-N film by cyclic voltammetry with a redox couple of ferricyanide (Fe(CN)6 3−/4−). Fig. S2. Reproducibility of the parylene matrix chip. (a) Mass spectra of spot-to-spot reproducibility of 25(OH)D3. (b) Mass spectra of spot-to-spot reproducibility of D3. (c) Mass spectra of shot-to-shot reproducibility of 25(OH)D3. (d) Mass spectra of shot-to-shot reproducibility of D3. Fig. S3. Quantitative analysis of vitamin D using the parylene matrix chip. (a) Mass spectrum of D3 in ethanol. (b) Mass spectrum of D3 in serum

    Defect-Passivated Photosensor Based on Cesium Lead Bromide (CsPbBr<sub>3</sub>) Perovskite Quantum Dots for Microbial Detection

    No full text
    A defect-passivated photosensor based on cesium lead bromide (CsPbBr3) perovskite quantum dots (QD) was fabricated using parylene films, and the photosensor was applied for the microbial detection. The CsPbBr3 perovskite QDs were synthesized to be homogeneous in size under thermodynamic control, and the perovskite QD-based photosensor was fabricated using MoS2 flakes as the electron transfer layer. In this work, a parylene film with functional groups was deposited on a photosensor for physical protection (waterproof) and defect (halide vacancy) passivation of the perovskite QD. As the first effect of the parylene film, the physical protection of the perovskite QD from water was estimated by comparing the photosensor performance after incubation in water. As the second effect of the parylene, the interaction between the functional groups of the parylene film and the halide vacancies of the perovskite QDs was investigated through the bandgap, crystal structure, and trap-state density analysis. Additionally, density functional theory analysis on Mulliken charges, lattice parameters, and Gibbs free energy demonstrated the effect of the defect passivation by parylene films. Finally, the parylene-passivated QD-based photosensor was applied to the detection of two kinds of food-poisoning and gastroduodenal disease bacteria (Listeria monocytogenes and Helicobacter pylori)

    Additional file 1 of Quantitative analysis of galactose using LDI-TOF MS based on a TiO2 nanowire chip

    No full text
    Additional file 1. Figure S1. Reproducibility analysis using LDI-TOF Mass spectrometry based on TiO2 nanowire chip. (a) Inter-spot measurements for five independent sample spots (n = 150 shots). (b) intra-spot measurements for five independent sample positions (n = 150 shots). Figure S2. Quantitative analysis of galactose using LDI-TOF MS based on the TiO2 nanowire chip. (a) Mass spectra of OPD assay products at different galactose concentrations in PCB buffer. (b) Mass spectra of OPD assay products at different galactose concentrations in serum after methanol extraction. (c) Mass spectra of OPD assay products at different galactose concentrations in dried blood spot after methanol extraction. Figure S3. Selectivity analysis of the OPD assay for galactose measurement under the interference of glucose. (a) OPD assay at different concentrations of galactose and a fixed concentration of glucose (541.0 μg/mL). (b) OPD assay at different concentrations of glucose and a fixed concentration of galactose (33.4 μg/mL)

    Additional file 1 of Laser desorption/ionization mass spectrometry of L-thyroxine (T4) using combi-matrix of α-cyano-4-hydroxycinnamic acid (CHCA) and graphene

    No full text
    Additional file 1: Fig. S1. Optical absorption in the UV range of a combi-matrix composed of an organic matrix (CHCA) to the solid matrices of (a) CNTs, (b) Pt NPs, and (c) P25 (TiO2). Fig. S2. Reproducibility of the combi-matrix of α-cyano-4-hydroxycinnamic acid (CHCA) and graphene for T4 analysis. Mass spectra of (a) spot-to-spot reproducibility of T4 and shot-to-shot reproducibility of T4. Fig. S3. Mass spectra of quantitative analysis of T4 in buffer using MALDI-TOF MS based on a combi-matrix

    Laser-Shock-Driven <i>In Situ</i> Evolution of Atomic Defect and Piezoelectricity in Graphitic Carbon Nitride for the Ionization in Mass Spectrometry

    No full text
    Nanostructurescoupled with mass spectrometryhave been intensively investigated to improve the detection sensitivity and reproducibility of small biomolecules in laser desorption/ionization mass spectrometry (LDI-MS). However, the impact of laser-induced shock wave on the ionization of the nanostructures has rarely been reported. Herein, we systematically elucidate the laser shock wave effect on the ionization in terms of the in situ development of atomic defects and piezoelectricity in two-dimensional graphitic carbon nitride nanosheets (g-C3N4 NS) by short laser pulses. The mass analysis results of immunosuppressive drugs verify the enhanced LDI-MS performance, structurally originating from anisotropic lattice distortions in g-C3N4 NS, i.e., in-plane extension (contraction) and out-of-plane contraction (extension) that modulate the charge carrier motion. Along with the experimental investigations, density functional theory calculations on Mulliken charges and dipole moments demonstrate the contribution of defect and piezoelectricity to the ionization. The results of this study provide a mechanistic understanding of the underlying ionization processes, which is crucial for revealing the full potential of laser shock waves in LDI-MS

    Nanostructured TiO<sub>2</sub> Materials for Analysis of Gout-Related Crystals Using Laser Desorption/Ionization Time-of-Flight (LDI-ToF) Mass Spectrometry

    No full text
    Crystals of monosodium urate monohydrate (MSU) and calcium pyrophosphate dihydrate (CPPD) are known to induce arthropathic diseases called gout and pseudogout, respectively. These crystals are deposited in various joints or tissues, causing severe pain. Correct identification of crystals is crucial for the appropriate treatment of gout and pseudogout, which exhibit very similar symptoms. Herein, a novel approach of laser desorption/ionization time-of-flight (LDI-ToF) mass spectrometry (MS) was introduced to analyze MSU and CPPD crystals with three different types of nanostructured TiO2 materials including TiO2 nanoparticles (P25), TiO2 nanowires synthesized from wet-corrosion method, and the mixture of P25 and TiO2 nanowires (P25/TiO2 nanowires) as inorganic solid matrices. Furthermore, the feasibility of LDI-ToF MS based on these TiO2 nanostructures for the analysis of the two arthropathy-related crystals was tested using spiked samples in synovial fluid at known crystal concentrations. The mass analysis results of MSU and CPPD crystals demonstrated that (1) the electrostatic interaction between analytes and solid matrices was key for the analyte ionization and (2) LDI-ToF MS with nanostructured TiO2 materials has the potential to be a practical approach for the diagnosis of gout and pseudogout

    Mucosal-Associated Invariant T Cell Deficiency in Chronic Obstructive Pulmonary Disease

    No full text
    <p>Mucosal-associated invariant T (MAIT) cells have been reported to play an important role in mucosal immunity. However, little is known about the roles of MAIT cells in chronic obstructive pulmonary disease (COPD). The aims of this study were to examine the levels of circulating MAIT cells and their subsets in COPD patients and to investigate the potential relationship between clinical parameters and MAIT cell levels. Forty-five COPD patients and 57 healthy control subjects were enrolled in the study. Circulating MAIT cells and their subset levels in the peripheral blood were measured by flow cytometry. Disease grades were classified according to the GOLD criteria for the assessment of severity of COPD. Circulating MAIT cell levels were found to be significantly reduced in COPD patients. In particular, this MAIT cell deficiency was more prominent in CD8+ and double-negative T cell subsets. Interestingly, elevated serum C-reactive protein level and reduced FEV<sub>1</sub>/FVC ratio were associated with MAIT cell deficiency in COPD patients. Furthermore, the circulating MAIT levels were found to be significantly lower in patients with moderate to severe COPD than in patients with mild COPD. Our data shows that MAIT cells are numerically deficient in the peripheral blood of patients with COPD. In addition, this MAIT cell deficiency was found to reflect inflammatory activity and disease severity. These findings provide important information for monitoring the changes in MAIT cell levels and for predicting the prognosis during the disease course.</p

    Electrochemical One-Step Immunoassay Based on Switching Peptides and Pyrolyzed Carbon Electrodes

    No full text
    Switching peptides were designed to bind reversibly to the binding pocket of antibodies (IgG) by interacting with frame regions (FRs). These peptides can be quantitatively released when antigens bind to IgG. As FRs have conserved amino acid sequences, switching peptides can be used as antibodies for different antigens and different source animals. In this study, an electrochemical one-step immunoassay was conducted using switching peptides labeled with ferrocene for the quantitative measurement of analytes. For the effective amperometry of the switching peptides labeled with ferrocene, a pyrolyzed carbon electrode was prepared by pyrolysis of the parylene-C film. The feasibility of the pyrolyzed carbon electrode for the electrochemical one-step immunoassay was determined by analyzing its electrochemical properties, such as its low double-layer capacitance (Cdl), high electron transfer rate (kapp), and wide electrochemical window. In addition, the factors influencing the amperometry of switching peptides labeled with ferrocene were analyzed according to the hydrodynamic radius, the number of intrahydrogen bonds, dipole moments, and diffusion coefficients. Finally, the applicability of the electrochemical one-step immunoassay for the medical diagnosis of the human hepatitis B surface antigen (hHBsAg) was assessed

    MALDI-TOF Mass Spectrometry Based on Parylene-Matrix Chip for the Analysis of Lysophosphatidylcholine in Sepsis Patient Sera

    No full text
    In this work, medical diagnosis of sepsis was conducted via quantitative analysis of lysophosphatidylcholine 16:0 (LPC 16:0) by using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry based on a parylene-matrix chip. In the first step, specific mass peaks for the diagnosis of sepsis were searched by comparing MALDI-TOF mass spectra of sepsis patient sera with healthy controls and pneumonia patient sera. Two mass peaks at m/z = 496.3 and 518.3 were chosen as those that are specifically different for sepsis sera to compare with healthy controls and pneumonia patient sera. These mass peaks were identified to be protonated and sodium adducts of LPC 16:0 by using tandem mass spectra (MS2 and MS3) of purely synthesized LPC 16:0 and extracted LPC 16:0 from a healthy control and a sepsis patient. In the next step, a standard curve for LPC 16:0 for the quantitative analysis of LPC 16:0 with MALDI-TOF MS based on the parylene-matrix chip was prepared, and the statistical correlation to the LC-MS analysis results was demonstrated by using the Bland–Altman test and Passing–Bablok regression. Finally, MALDI-TOF MS based on the parylene-matrix chip was used for the quantification of LPC 16:0 with sera from patients with severe sepsis and septic shock (n = 143), pneumonia patients (n = 12), and healthy sera (n = 31). The sensitivity and the selectivity of medical diagnosis of sepsis was estimated to be 97.9% and 95.5% by using MALDI-TOF MS based on the parylene-matrix chip, respectively
    corecore