8,353 research outputs found
Shortening of the Short Refractory Periods in Short QT Syndrome.
BACKGROUND: Diagnosis of short QT syndrome (SQTS) remains difficult in case of borderline QT values as often found in normal populations. Whether some shortening of refractory periods (RP) may help in differentiating SQTS from normal subjects is unknown. METHODS AND RESULTS: Atrial and right ventricular RP at the apex and right ventricular outflow tract as determined during standard electrophysiological study were compared between 16 SQTS patients (QTc 324±24 ms) and 15 controls with similar clinical characteristics (QTc 417±32 ms). Atrial RP were significantly shorter in SQTS compared with controls at 600- and 500-ms basic cycle lengths. Baseline ventricular RP were significantly shorter in SQTS patients than in controls, both at the apex and right ventricular outflow tract and for any cycle length. Differences remained significant for RP of any subsequent extrastimulus at any cycle length and any pacing site. A cut-off value of baseline RP <200 ms at the right ventricular outflow tract either at 600- or 500-ms cycle length had a sensitivity of 86% and a specificity of 100% for the diagnosis of SQTS. CONCLUSIONS: Patients with SQTS have shorter ventricular RP than controls, both at baseline during various cycle lengths and after premature extrastimuli. A cut-off value of 200 ms at the right ventricular outflow tract during 600- and 500-ms basic cycle length may help in detecting true SQTS from normal subjects with borderline QT values
LHCb Preshower Front-End Electronics Board. Qualification of the final prototype
This note describes the tests performed on the final prototypes of the SPD/Preshower Front-End electronics boards
LHCb Preshower Front-End Electronics Board
This note describes the digital part of the fully synchronous solution developped for the lhcb preshower detector Front-End electronics. The general design and the main features of this board are given including trigger part
A new generation pixel readout ASIC in 65 nm CMOS for HL-LHC experiments
A prototype of a readout ASIC in CMOS 65 nm for a pixel detector at high luminosity LHC is described. The chip has been designed to guarantee high efficiency at extreme data rates for very low signals and with low power consumption. Two different analogue very-front-end designs, one synchronous and one asynchronous, have been implemented. Internal 10-bit DACs are used for biasing, while monitoring is provided by a 12-bit ADC. A novel digital architecture which maintains high efficiency (above 99.5%) at pixel hit rates up to 3 GHz/cm2, trigger rates up to 1 MHz and trigger latency of 12.5 ÎŒs has been developed. The chip has been designed as part of the Italian INFN CHIPIX65 project and in close synergy with the international CERN RD53 Collaboration on 65 nm CMOS. Test results of the prototype are described
Modelling and simulating change in reforesting mountain landscapes using a social-ecological framework
Natural reforestation of European mountain landscapes raises major environmental and societal issues. With local stakeholders in the Pyrenees National Park area (France), we studied agricultural landscape colonisation by ash (Fraxinus excelsior) to enlighten its impacts on biodiversity and other landscape functions of importance for the valley socio-economics. The study comprised an integrated assessment of land-use and land-cover change (LUCC) since the 1950s, and a scenario analysis of alternative future policy. We combined knowledge and methods from landscape ecology, land change and agricultural sciences, and a set of coordinated field studies to capture interactions and feedback in the local landscape/land-use system. Our results elicited the hierarchically-nested relationships between social and ecological processes. Agricultural change played a preeminent role in the spatial and temporal patterns of LUCC. Landscape colonisation by ash at the parcel level of organisation was merely controlled by grassland management, and in fact depended on the farmer's land management at the whole-farm level. LUCC patterns at the landscape level depended to a great extent on interactions between farm household behaviours and the spatial arrangement of landholdings within the landscape mosaic. Our results stressed the need to represent the local SES function at a fine scale to adequately capture scenarios of change in landscape functions. These findings orientated our modelling choices in the building an agent-based model for LUCC simulation (SMASH - Spatialized Multi-Agent System of landscape colonization by ASH). We discuss our method and results with reference to topical issues in interdisciplinary research into the sustainability of multifunctional landscapes
Hybrid approach for energy aware management of multi-cloud architecture integrating user machines
International audienceThe arrival and development of remotely accessible services via the cloud has transfigured computer technology. However, its impact on personal computing remains limited to cloud-based applications. Meanwhile, acceptance and usage of telephony and smartphones have exploded. Their sparse administration needs and general user friendliness allows all people, regardless of technology literacy, to access, install and use a large variety of applications.We propose in this paper a model and a platform to offer personal computing a simple and transparent usage similar to modern telephony. In this model, user machines are integrated within the classical cloud model, consequently expanding available resources and management targets. In particular, we defined and implemented a modular architecture including resource managers at different levels that take into account energy and QoS concerns. We also propose simulation tools to design and size the underlying infrastructure to cope with the explosion of usage. Functionalities of the resulting platform are validated and demonstrated through various utilization scenarios. The internal scheduler managing resource usage is experimentally evaluated and compared with classical method-ologies, showing a significant reduction of energy consumption with almost no QoS degradation
Rare-earth-activated glasses for solar energy conversion
The solar cells efficiency may be improved by better exploitation of the solar spectrum, making use of the down-conversion mechanism, where one high energy photon is cut into two low energy photons. The choice of the matrix is a crucial point to obtain an efficient down-conversion process with rare-earth ions. When energy transfer between rare earth ions is used to activate this process, high emission and absorption cross sections as well as low cut-off phonon energy are mandatory. In this paper we present some results concerning 70SiO2-30HfO2 glass ceramic planar waveguides co-activated by Tb3+/Yb3+ ions, fabricated by sol gel route using a top-down approach, and a bulk fluoride glass of molar composition 70ZrF4 23.5LaF3 0.5AlF3 6GaF3 co-activated by Pr3+/Yb3+ ion. Attention is focused on the assessment of the energy transfer efficiency between the two couples of rare earth ions in the different hosts
Experimental study of different silicon sensor options for the upgrade of the CMS Outer Tracker
- âŠ