4 research outputs found

    Direction finding for an extended target with possibly non-symmetric spatial spectrum

    Get PDF
    We consider the problem of estimating the direction of arrival (DOA) of an extended target in radar array processing. Two algorithms are proposed that do not assume that the power azimuthal distribution of the scatterers is symmetric with respect to the mass center of the target. The first one is based on spectral moments which are easily related to the target’s DOA. The second method stems from a previous paper by the present authors and consists of a least-squares fit on the elements of the covariance matrix. Both methods are simple and are shown to provide accurate estimates. Furthermore, they extend the range of unambiguous DOAs that can be estimated, compared with the same previous paper

    Signal waveform estimation in the presence of uncertainties about the steering vector

    Get PDF
    We consider the problem of signal waveform estimation using an array of sensors where there exist uncertainties about the steering vector of interest. This problem occurs in many situations, including arrays undergoing deformations, uncalibrated arrays, scattering around the source, etc. In this paper, we assume that some statistical knowledge about the variations of the steering vector is available. Within this framework, two approaches are proposed, depending on whether the signal is assumed to be deterministic or random. In the former case, the maximum likelihood (ML) estimator is derived. It is shown that it amounts to a beamforming-like processing of the observations, and an iterative algorithm is presented to obtain the ML weight vector. For random signals, a Bayesian approach is advocated, and we successively derive an (approximate) minimum mean-square error estimator and maximum a posteriori estimators. Numerical examples are provided to illustrate the performances of the estimators

    The Mellin Matched Filter

    No full text

    Estimation of flight altitude in the aperture synthesizing mode for altimeter with continuous probing signal

    No full text
    It is proposed the function, defining phase modification of point, ground located reflector at the aperture synthesizing interval of radar altimeter with continuous LFM signal. It is carried our general function shape in wave domain and its expansion by “fast” time. We synthesized the algorithm of the altitude estimation, taking into account the carrier movement during process of beating signal shape. There are represented the results of full-scale experiment
    corecore