4 research outputs found

    Criticality of AC?-Formulae

    Get PDF

    On the Probabilistic Degree of OR over the Reals

    Get PDF
    We study the probabilistic degree over R of the OR function on n variables. For epsilon in (0,1/3), the epsilon-error probabilistic degree of any Boolean function f:{0,1}^n -> {0,1} over R is the smallest non-negative integer d such that the following holds: there exists a distribution of polynomials Pol in R[x_1,...,x_n] entirely supported on polynomials of degree at most d such that for all z in {0,1}^n, we have Pr_{P ~ Pol}[P(z) = f(z)] >= 1- epsilon. It is known from the works of Tarui (Theoret. Comput. Sci. 1993) and Beigel, Reingold, and Spielman (Proc. 6th CCC 1991), that the epsilon-error probabilistic degree of the OR function is at most O(log n * log(1/epsilon)). Our first observation is that this can be improved to O{log (n atop <= log(1/epsilon))}, which is better for small values of epsilon. In all known constructions of probabilistic polynomials for the OR function (including the above improvement), the polynomials P in the support of the distribution Pol have the following special structure: P(x_1,...,x_n) = 1 - prod_{i in [t]} (1- L_i(x_1,...,x_n)), where each L_i(x_1,..., x_n) is a linear form in the variables x_1,...,x_n, i.e., the polynomial 1-P(bar{x}) is a product of affine forms. We show that the epsilon-error probabilistic degree of OR when restricted to polynomials of the above form is Omega(log (n over <= log(1/epsilon))/log^2 (log (n over <= log(1/epsilon))})), thus matching the above upper bound (up to polylogarithmic factors)

    On the Probabilistic Degree of OR over the Reals

    Full text link
    We study the probabilistic degree over reals of the OR function on nn variables. For an error parameter ϵ\epsilon in (0,1/3), the ϵ\epsilon-error probabilistic degree of any Boolean function ff over reals is the smallest non-negative integer dd such that the following holds: there exists a distribution DD of polynomials entirely supported on polynomials of degree at most dd such that for all z{0,1}nz \in \{0,1\}^n, we have PrPD[P(z)=f(z)]1ϵPr_{P \sim D} [P(z) = f(z) ] \geq 1- \epsilon. It is known from the works of Tarui ({Theoret. Comput. Sci.} 1993) and Beigel, Reingold, and Spielman ({ Proc. 6th CCC} 1991), that the ϵ\epsilon-error probabilistic degree of the OR function is at most O(logn.log1/ϵ)O(\log n.\log 1/\epsilon). Our first observation is that this can be improved to Olog(nlog1/ϵ)O{\log {{n}\choose{\leq \log 1/\epsilon}}}, which is better for small values of ϵ\epsilon. In all known constructions of probabilistic polynomials for the OR function (including the above improvement), the polynomials PP in the support of the distribution DD have the following special structure:P=1(1L1).(1L2)...(1Lt)P = 1 - (1-L_1).(1-L_2)...(1-L_t), where each Li(x1,...,xn)L_i(x_1,..., x_n) is a linear form in the variables x1,...,xnx_1,...,x_n, i.e., the polynomial 1P(x1,...,xn)1-P(x_1,...,x_n) is a product of affine forms. We show that the ϵ\epsilon-error probabilistic degree of OR when restricted to polynomials of the above form is Ω(loga/log2a)\Omega ( \log a/\log^2 a ) where a=log(nlog1/ϵ)a = \log {{n}\choose{\leq \log 1/\epsilon}}. Thus matching the above upper bound (up to poly-logarithmic factors)

    Tight Chang’s-lemma-type bounds for Boolean functions

    Get PDF
    Chang’s lemma (Duke Mathematical Journal, 2002) is a classical result in mathematics, with applications spanning across additive combinatorics, combinatorial number theory, analysis of Boolean functions, communication complexity and algorithm design. For a Boolean function f that takes values in {-1, 1} let r(f) denote its Fourier rank (i.e., the dimension of the span of its Fourier support). For each positive threshold t, Chang’s lemma provides a lower bound on δ(f):= Pr[f(x) = -1] in terms of the dimension of the span of its characters with Fourier coefficients of magnitude at least 1/t. In this work we examine the tightness of Chang’s lemma with respect to the following three natural settings of the threshold: the Fourier sparsity of f, denoted k(f), the Fourier max-supp-entropy of f, denoted k′(f), defined to be the maximum value of the reciprocal of the absolute value of a non-zero Fourier coefficient, the Fourier max-rank-entropy of f, denoted k′′(f), defined to be the minimum t such that characters whose coefficients are at least 1/t in magnitude span a r(f)-dimensional space. In this work we prove new lower bounds on δ(f) in terms of the above measures. One of our lower bounds, δ(f) = Ω (r(f)2/(k(f) log2 k(f))), subsumes and refines the previously best known upper bound r(f) = O(pk(f) log k(f)) on r(f) in terms of k(f) by Sanyal (Theory of Computing, 2019). We improve upon this bound and show r(f) = O(pk(f)δ(f) log k(f)). Another lower bound, δ(f) = Ω (r(f)/(k′′(f) log k(f))), is based on our improvement of a bound by Chattopadhyay, Hatami, Lovett and Tal (ITCS, 2019) on the sum of absolute values of level-1 Fourier coefficients in terms of F2-degree. We further show that Chang’s lemma for the above-mentioned choices of the threshold is asymptotically outperformed by our bounds for most settings of the parameters involved. Next, we show that our bounds are tight for a wide range of the parameters involved, by constructing functions witnessing their tightness. All the functions we construct are modifications of the Addressing function, where we replace certain input variables by suitable functions. Our final contribution is to construct Boolean functions f for which our lower bounds asymptotically match δ(f), and for any choice of the threshold t, the lower bound obtained from Chang’s lemma is asymptotically smaller than δ(f). Our results imply more refined deterministic one-way communication complexity upper bounds for XOR functions. Given the wide-ranging application of Chang’s lemma to areas like additive combinatorics, learning theory and communication complexity, we strongly feel that our refinements of Chang’s lemma will find many more applications
    corecore