18 research outputs found

    Effect of inverse magnetic catalysis on conserved charge fluctuations in hadron resonance gas model

    Full text link
    The effect of inverse magnetic catalysis (IMC) has been observed on the conserved charge fluctuations and the correlations along the chemical freeze-out curve in a hadron resonance gas model. The fluctuations and the correlations have been compared with and without charge conservations. The charge conservation plays an important role in the calculation of the fluctuations at nonzero magnetic field and for the fluctuations in the strange charge at zero magnetic field. The charge conservation diminishes the correlations χBS\chi_{BS} and χQB\chi_{QB}, but enhances the correlation χQS\chi_{QS}. The baryonic fluctuations (2nd order) at B=0.25B = 0.25 GeV2{GeV}^2 increases more than two times compared to B=0B = 0 at higher μB\mu_{B}. The fluctuations have been compared at nonzero magnetic field along the freeze-out curve i.e along fitted parameters of the chemical freeze-out temperature and chemical potentials, with the fluctuations at nonzero magnetic field along the freeze-out curve with the IMC effect, and the results are very different with the IMC effect. This is clearly seen in the products of different moments σ2/M{{\sigma}^2}/{M} and SσS\sigma of net-kaon distribution.Comment: 12 pages,10 figures, Accepted by Phys. Rev.

    Analyzing flow anisotropies with excursion sets in relativistic heavy-ion collisions

    Full text link
    We show that flow anisotropies in relativistic heavy-ion collisions can be analyzed using a certain technique of shape analysis of excursion sets recently proposed by us for CMBR fluctuations to investigate anisotropic expansion history of the universe. The technique analyzes shapes (sizes) of patches above (below) certain threshold value for transverse energy/particle number (the excursion sets) as a function of the azimuthal angle and rapidity. Modeling flow by imparting extra anisotropic momentum to the momentum distribution of particles from HIJING, we compare the resulting distributions for excursion sets at two different azimuthal angles. Angles with maximum difference in the two distributions identify the event plane, and the magnitude of difference in the two distributions relates to the magnitude of momentum anisotropy, i.e. elliptic flow.Comment: 5 pages, 4 figure

    Transport coefficients of hot and dense hadron gas in a magnetic field: a relaxation time approach

    Full text link
    We estimate various transport coefficients of hot and dense hadronic matter in the presence of magnetic field. The estimation is done through solutions of the relativistic Boltzmann transport equation in the relaxation time approximation.We have investigated the temperature and the baryon chemical potential dependence of these transport coefficients. Explicit calculations are done for the hadronic matter in the ambit of hadron resonance gas model. We estimate thermal conductivity, electrical conductivity and the shear viscosity of hadronic matter in the presence of a uniform magnetic field. Magnetic field, in general, makes the transport coefficients anisotropic. It is also observed that all the transport coefficients perpendicular to the magnetic field are smaller compared to their isotropic counterpart.Comment: 22 pages, 11 figures. arXiv admin note: text overlap with arXiv:1903.0393
    corecore