14,929 research outputs found
Measuring Fundamental Parameters of Substellar Objects. II: Masses and Radii
We present mass and radius derivations for a sample of very young, mid- to
late M, low-mass stellar and substellar objects in Upper Sco and Taurus. In a
previous paper, we determined effective temperatures and surface gravities for
these targets, from an analysis of their high-resolution optical spectra and
comparisons to the latest synthetic spectra. We now derive extinctions, radii,
masses and luminosities by combining our previous results with observed
photometry, surface fluxes from the synthetic spectra and the known cluster
distances. These are the first mass and radius estimates for young, very low
mass bodies that are independent of theoretical evolutionary models (though our
estimates do depend on spectral modeling). We find that for most of our sample,
our derived mass-radius and mass-luminosity relationships are in very good
agreement with the theoretical predictions. However, our results diverge from
the evolutionary model values for the coolest, lowest-mass targets: our
inferred radii and luminosities are significantly larger than predicted for
these objects at the likely cluster ages, causing them to appear much younger
than expected. We suggest that uncertainties in the evolutionary models - e.g.,
in the choice of initial conditions and/or treatment of interior convection -
may be responsible for this discrepancy. Finally, two of our late-M objects
(USco 128 and 130) appear to have masses close to the deuterium-fusion boundary
(9--14 Jupiters, within a factor of 2). This conclusion is primarily a
consequence of their considerable faintness compared to other targets with
similar extinction, spectral type and temperature (difference of 1 mag). Our
result suggests that the faintest young late-M or cooler objects may be
significantly lower in mass than the current theoretical tracks indicate.Comment: 54 pages, incl. 5 figs, accepted Ap
How Many Templates for GW Chirp Detection? The Minimal-Match Issue Revisited
In a recent paper dealing with maximum likelihood detection of gravitational
wave chirps from coalescing binaries with unknown parameters we introduced an
accurate representation of the no-signal cumulative distribution of the
supremum of the whole correlator bank. This result can be used to derive a
refined estimate of the number of templates yielding the best tradeoff between
detector's performance (in terms of lost signals among those potentially
detectable) and computational burden.Comment: submitted to Class. Quantum Grav. Typing error in eq. (4.8) fixed;
figure replaced in version
Quantum Friction of Micromechanical Resonators at Low Temperatures
Dissipation of micro- and nano-scale mechanical structures is dominated by
quantum-mechanical tunneling of two-level defects intrinsically present in the
system. We find that at high frequencies--usually, for smaller, micron-scale
structures--a novel mechanism of phonon pumping of two-level defects gives rise
to weakly temperature-dependent internal friction, , concomitant to the
effects observed in recent experiments. Due to their size, comparable to or
shorter than the emitted phonon wavelength, these structures suffer from
superradiance-enhanced dissipation by the collective relaxation of a large
number of two-level defects contained within the wavelength.Comment: To apear in Phys. Rev. Let
Equilibration in Quark Gluon Plasma
The hydrodynamic expansion rate of quark gluon plasma (QGP) is evaluated and
compared with the scattering rate of quarks and gluons within the system.
Partonic scattering rates evaluated within the ambit of perturbative Quantum
Choromodynamics (pQCD) are found to be smaller than the expansion rate
evaluated with ideal equation of state (EoS) for the QGP. This indicate that
during the space-time evolution the system remains out of equilibrium.
Enhancement of pQCD cross sections and a more realistic EoS keep the partons
closer to the equilibrium.Comment: To be published in the Quark Matter 2008 poster proceeding
Acceptance Dependence of Fluctuation in Particle Multiplicity
The effect of limiting the acceptance in rapidity on event-by-event
multiplicity fluctuations in nucleus-nucleus collisions has been investigated.
Our analysis shows that the multiplicity fluctuations decrease when the
rapidity acceptance is decreased. We explain this trend by assuming that the
probability distribution of the particles in the smaller acceptance window
follows binomial distribution. Following a simple statistical analysis we
conclude that the event-by-event multiplicity fluctuations for full acceptance
are likely to be larger than those observed in the experiments, since the
experiments usually have detectors with limited acceptance. We discuss the
application of our model to simulated data generated using VENUS, a widely used
event generator in heavy-ion collisions. We also discuss the results from our
calculations in presence of dynamical fluctuations and possible observation of
these in the actual data.Comment: To appear in Int. J. Mod. Phys.
Detecting an association between Ray and Gravitational Wave Bursts
If -ray bursts (GRBs) are accompanied by gravitational wave bursts (GWBs) the correlated output of two gravitational wave detectors evaluated in the moments just prior to a GRB will differ from that evaluated at times not associated with a GRB. We can test for this difference independently of any model of the GWB signal waveform. If we invoke a model for the GRB source population and GWB radiation spectral density we can find a confidence interval or upper limit on the root-mean-square GWB signal amplitude in the detector waveband. To illustrate we adopt a simple, physically motivated model and estimate that initial LIGO detector observations coincident with 1000 GRBs could lead us to exclude, with 95% confidence, associated GWBs with $h_{RMS} be Gaussian or that any inter-detector correlated noise be measured or measurable; it does not require advanced or a priori knowledge of the source waveform; and the limits obtained on the wave-strength improve with the number of observed GRBs
Increased electro-convulsive therapy stimulus intensity and cognitive functioning in manic patients
Background: Temporary changes in cognitive functions after electro-convulsive therapy (ECT) have been documented. The researchers are exploring if increasing the stimulus intensity of ECT produce better recovery from psychopathology also trying to map effects of increased stimulus intensity on side effects profile including cognitive functions. In the present study, we are reporting effects of increased stimulus intensity of ECT on cognitive functions in manic patients.Methods: The present study is a prospective analytical case control study conducted in the department of psychiatry, Institute of Mental Health and Hospital, Agra, after getting clearance from hospital ethical committee. The study included 60 patients with the diagnosis of manic psychopathologyfrom May 2018 to September 2019. Sample was divided into two groups: 1.5 times of threshold and 2.0 times of threshold. The ECT was delivered as per specified protocol of the study. The scores on Montreal cognitive assessment (MoCA) were compared both within and between groups at baseline and follow up.Results: The results suggested that both level of stimulus intensity produced mild level of disruptions in cognitive functioning at follow ups and the higher stimulus intensity i.e. 2.0 times of threshold resulted in more impairment in cognitive functions.Conclusions: The impact of ECT by increasing its current intensity for two times, on cognitive functions as seen clinically, suggested no serious adverse effects on any of the patients included in the sample
- …