7,733 research outputs found

    Separability and the genus of a partial dual

    Full text link
    Partial duality generalizes the fundamental concept of the geometric dual of an embedded graph. A partial dual is obtained by forming the geometric dual with respect to only a subset of edges. While geometric duality preserves the genus of an embedded graph, partial duality does not. Here we are interested in the problem of determining which edge sets of an embedded graph give rise to a partial dual of a given genus. This problem turns out to be intimately connected to the separability of the embedded graph. We determine how separability is related to the genus of a partial dual. We use this to characterize partial duals of graphs embedded in the plane, and in the real projective plane, in terms of a particular type of separation of an embedded graph. These characterizations are then used to determine a local move relating all partially dual graphs in the plane and in the real projective plane

    Integration and conjugacy in knot theory

    Full text link
    This thesis consists of three self-contained chapters. The first two concern quantum invariants of links and three manifolds and the third contains results on the word problem for link groups. In chapter 1 we relate the tree part of the Aarhus integral to the mu-invariants of string-links in homology balls thus generalizing results of Habegger and Masbaum. There is a folklore result in physics saying that the Feynman integration of an exponential is itself an exponential. In chapter 2 we state and prove an exact formulation of this statement in the language which is used in the theory of finite type invariants. The final chapter is concerned with properties of link groups. In particular we study the relationship between known solutions from small cancellation theory and normal surface theory for the word and conjugacy problems of the groups of (prime) alternating links. We show that two of the algorithms in the literature for solving the word problem, each using one of the two approaches, are the same. Then, by considering small cancellation methods, we give a normal surface solution to the conjugacy problem of these link groups and characterize the conjugacy classes. Finally as an application of the small cancellation properties of link groups we give a new proof that alternating links are non-trivial.Comment: University of Warwick Ph.D. thesi

    A permanent formula for the Jones polynomial

    Get PDF
    The permanent of a square matrix is defined in a way similar to the determinant, but without using signs. The exact computation of the permanent is hard, but there are Monte-Carlo algorithms that can estimate general permanents. Given a planar diagram of a link L with nn crossings, we define a 7n by 7n matrix whose permanent equals to the Jones polynomial of L. This result accompanied with recent work of Freedman, Kitaev, Larson and Wang provides a Monte-Carlo algorithm to any decision problem belonging to the class BQP, i.e. such that it can be computed with bounded error in polynomial time using quantum resources.Comment: To appear in Advances in Applied Mathematic

    Comparison of models of CO2-laser impedance fluctuations

    Get PDF
    There is a large opto-galvanic effect (OGE) in CO2-N2-He laser mixtures and this is exploited in laser frequency and power stabilisation systems. Two substantially different theories have been advanced to explain the effect. The two models are compared and it is concluded that the multi-step ionisation model is not adequate to describe the OGE in CO2 lasers, but the temperature perturbation or discharge cooling model describes the phenomenon with considerable precision

    Bipartite partial duals and circuits in medial graphs

    Full text link
    It is well known that a plane graph is Eulerian if and only if its geometric dual is bipartite. We extend this result to partial duals of plane graphs. We then characterize all bipartite partial duals of a plane graph in terms of oriented circuits in its medial graph.Comment: v2: minor changes. To appear in Combinatoric

    NSW recorded crime statistics 2012

    Get PDF
      This report finds that in New South Wales, the surge in incidents involving the discharge of a firearm into premises which began in February 2010 has been reversed. In February 2010, incidents of discharge firearm into premises were running at an average of five a month. They peaked in August 2012 at an average rate of more than 11 per month. By December 2012, they were back down to around 6.7 a month. Other types of shooting incident are also down from their peaks between 2001 and 2003. This report presents further detail on crime trends across New South Wales. It finds that between January 2011 and December 2012: Fraud increased by 14.6 per cent; Assault - Non-domestic related fell by 5.7 per cent; Break and enter (non-dwelling) fell by 4.9 per cent; and Motor vehicle theft fell by 7.0 per cent The remaining major categories of crime remained stable across the state as a whole. &nbsp