9 research outputs found


    Get PDF
    This paper is concerned with the estimation of employment relationship and employment efficiency under production risk using a panel of Zimbabwe¡¯s manufacturing industries. A flexible labour demand function is used consisting of two parts: the traditional labour demand function and labour demand variance function. Labour demand is a function of wages, output, quasi-fixed inputs and time variables. The variance function is a function of the determinants of labour demand and a number of production and policy characteristic variables. Estimation of industry and time-varying employment efficiency is also considered. The empirical results show that the average employment efficiency is 92%.Labour demand, Variance, Efficiency, Manufacturing, Industries, Zimbabwe

    Amalgamation of South Africa’s rural municipalities: is it a good idea?

    Get PDF
    The majority of South African municipalities facing the challenges of unemployment, poverty and weak infrastructure are in rural areas. To fulfil their mandate, they depend significantly on financial transfers.  This is something that the government is focused on minimising as evidenced by the recent Department of Cooperative Governance and Traditional Affairs proposal of amalgamating many municipalities to make them self-reliant and functional.  This paper asks the question: ‘will amalgamations of rural municipalities correct for financial viability and functionality’? Using case studies of amalgamated municipalities, the paper observes that amalgamations will not make all rural municipalities self-sufficient and functional

    Developing pathways to improve smallholder agricultural productivity through ecological intensification technologies in semi-arid Limpopo, South Africa

    Get PDF
    Agriculture faces an enormous global challenge of feeding nine billion people by 2050. This means a comprehensive intensification of agriculture is required. Ecological intensification is gaining momentum as a clearly defined vision for increasing agriculture productivity and sustainability. How ecological intensification could be tailored to benefit smallholder farming systems in sub Saharan Africa (SSA) remains the major question. In this study, we develop pathways relying on ecological intensification technologies and suiting different farm types of smallholder agriculture. This study relies on multiyear engagements with agricultural experts and smallholder farmers in Ha Lambani, South Africa and leads to the identification of farmer groupings. We analyse 40 in-depth semi structured interviews with farmers which leads to the identification of farming patterns and constraints. We present how farming systems analysis of challenges and constraints helps to identify and link specific ecosystem services with suitable ecological intensification options. We conclude that the expert-based classification of farmers offered a more contextualized representation of farming system heterogeneity, where tailored ecological intensification technologies could play a major role in improving agricultural productivity. Beyond this community, it emphasizes the need to consider farmers type heterogeneity as a strong decision parameter for targeting ecological intensification

    Artisanal small-scale mining: Potential ecological disaster in Mzingwane District, Zimbabwe

    No full text
    Artisanal small-scale mining (ASM) has devastating impacts on the environment, such as deforestation, over-stripping of overburden, burning of bushes and use of harmful chemicals like mercury. These environmental impacts are a result of destructive mining, wasteful mineral extraction and processing practices and techniques used by the artisanal small-scale miners. This paper explores the ecological problems caused by ASM in Mzingwane District, Zimbabwe. It seeks to determine the nature and extent to which the environment has been damaged by the ASM from a community perspective. Interviews, questionnaires and observations were used to collect qualitative data. Results indicated that the nature of the mining activities undertaken by unskilled and under-equipped gold panners in Mzingwane District is characterised by massive stripping of overburden and burning of bushes, leading to destruction of large tracts of land and river systems and general ecosystem disturbance. The research concluded that ASM in Mzingwane District is an ecological time bomb, stressing the need for appropriate modifications of the legal and institutional frameworks for promoting sustainable use of natural resources and mining development in Zimbabwe. Government, through the Ministry of Small Scale and Medium Enterprises, need to regularise and formalise all gold mining activities through licensing, giving permanent claims and operating permits to panners in order to recoup some of the added costs in the form of taxes. At the local level, the Mzingwane Rural District Council (MRDC) together with the Environmental Management Agency (EMA) need to design appropriate environmental education and awareness programmes targeting the local community and gold panners

    Controlled Deposition of Single-Walled Carbon Nanotubes Doped Nanofibers Mats for Improving the Interlaminar Properties of Glass Fiber Hybrid Composites

    No full text
    The properties of glass fiber composites were improved by strengthening the interlaminar regions using electrospun nanofibers mats. However, the chaotic nature of the electrospinning process at the collector restricts the controlled deposition and alignment of nanofibers and limits the use of electrospun nanofibers as secondary reinforcements. Hence, auxiliary vertical electrodes were used, which drastically reduced the diameter of the nanofibers from 450 nm to 150 nm and also improved the alignment of nanofibers. The aligned nanofibers were then used for doping the functionalized single-walled carbon nanotubes (f-SWCNTs) with nanofibers, which controlled the inherent issues associated with SWCNTs such as agglomeration, poor dispersion, and alignment. This process produced f-SWCNTs doped nanofiber mats. A series of tensile, three-point flexural, and Charpy impact tests showed that 30 vol% glass fiber composites reinforced with 0.5 wt% of randomly oriented nanofiber (RONFs) mats improved the properties of the hybrid composites compared to 0.1 wt%, 0.2 wt%, and 1 wt% RONFs mats reinforced glass fiber hybrid composites. The increase in properties for 0.5 wt% composites was attributed to the higher specific surface area and resistance to the relative slip within the interlaminar regions. The 0.5 wt% RONFs were then used to produce 0.5 wt% of continuous-aligned nanofiber (CANFs) mats, which showed improved mechanical properties compared to 0.5 wt% randomly oriented nanofiber (RONFs) mats reinforced hybrid composites. The CANFs mats with reduced diameter increased the tensile strength, flexural strength, and impact resistance by 4.71%, 17.19%, and 20.53%, respectively, as compared to the random nanofiber mats. The increase in properties could be attributed to the reduced diameter, controlled deposition, and alignment of the nanofibers. Further, the highest increase in mechanical properties was achieved by the addition of f-SWCNTs doped CANFs mats strengthened hybrid composites, and the increase was 30.34% for tensile strength, 30.18% for flexural strength, and 132.29% for impact resistance, respectively. This improvement in properties was made possible by orderly alignments of f-SWCNTs within the nanofibers. The SEM images further confirmed that auxiliary vertical electrodes (AVEs) reduced the diameter, improved the alignment and molecular orientation of the nanofibers, and thus helped to reinforce the f-SWCNTs within the nanomats, which improved the properties of the glass hybrid composites

    Climate change, household vulnerability and smart agriculture: The case of two South African provinces

    No full text
    The impact of climate-change disasters poses significant challenges for South Africa, especially for vulnerable rural households. In South Africa, the impact of climate change at the local level, especially in rural areas, is not well known. Rural households are generally poor and lack resources to adapt to and mitigate the impact of climate change, but the extent of their vulnerability is largely not understood. This study looked at the micro-level impact of climate change, evaluated household vulnerability and assessed alternative adaptation strategies in rural areas. The results indicate that climate change will hit crop yields hard and that households with less capital are most vulnerable. These households consist of the elderly and households headed by females. Households that receive remittances or extension services or participate in formal savings schemes in villages are less vulnerable. The results suggest that households need to move towards climate-smart agriculture, which combines adaptation, mitigation and productivity growth