4,279 research outputs found

    Nonlinear wave propagation through cold plasma

    Full text link
    Electromagnetic wave propagation through cold collision free plasma is studied using the nonlinear perturbation method. It is found that the equations can be reduced to the modified Kortweg-de Vries equation

    Capture of free-flying payloads with flexible space manipulators

    Get PDF
    A recently developed control system for capturing free-flying payloads with flexible manipulators is discussed. Three essential points in this control system are, calculating optimal path, using a vision sensor for an external sensor, and controlling active vibration. Experimental results are shown using a planar flexible manipulator

    The MHD Kelvin-Helmholtz Instability III: The Role of Sheared Magnetic Field in Planar Flows

    Get PDF
    We have carried out simulations of the nonlinear evolution of the magnetohydrodynamic (MHD) Kelvin-Helmholtz (KH) instability for compressible fluids in 2122\frac{1}{2}-dimensions, extending our previous work by Frank et al (1996) and Jones \etal (1997). In the present work we have simulated flows in the x-y plane in which a ``sheared'' magnetic field of uniform strength ``smoothly'' rotates across a thin velocity shear layer from the z direction to the x direction, aligned with the flow field. We focus on dynamical evolution of fluid features, kinetic energy dissipation, and mixing of the fluid between the two layers, considering their dependence on magnetic field strength for this geometry. The introduction of magnetic shear can allow a Cat's Eye-like vortex to form, even when the field is stronger than the nominal linear instability limit given above. For strong fields that vortex is asymmetric with respect to the preliminary shear layer, however, so the subsequent dissipation is enhanced over the uniform field cases of comparable field strength. In fact, so long as the magnetic field achieves some level of dynamical importance during an eddy turnover time, the asymmetries introduced through the magnetic shear will increase flow complexity, and, with that, dissipation and mixing. The degree of the fluid mixing between the two layers is strongly influenced by the magnetic field strength. Mixing of the fluid is most effective when the vortex is disrupted by magnetic tension during transient reconnection, through local chaotic behavior that follows.Comment: 14 pages including 9 figures (4 figures in degraded jpg format), full paper with original quality figures available via anonymous ftp at ftp://canopus.chungnam.ac.kr/ryu/mhdkh2d.uu, to appear in The Astrophysical Journa

    Desorption of water cluster ions from the surface of solid rare gases

    No full text
    Electron or photon irradiation on H₂O adsorbed on the surface of rare gas solids induces the desorption of protonated water clusters, (H₂O)nH⁺. The yield and the size n distribution of cluster ions depend on the coverage, the deposition temperature of water and the thickness of a rare gas film. These results indicate that the (H₂O)nH⁺ ions are originated from the isolated water cluster and most important factor determining the size n distribution of desorbed (H₂O)nH⁺ is the sizes of water islands on rare gas solid. The measurement of kinetic energy distributions indicated that the desorbing energy of clusters depend on the rare gas species of the substrates and the cluster size. It is suggested that the (H₂O)nH⁺ desorption is due to Coulomb repulsion between the ionic water cluster and the rare gas ion

    Pulse-coupled resonate-and-fire models

    Get PDF
    We analyze two pulse-coupled resonate-and-fire neurons. Numerical simulation reveals that an anti-phase state is an attractor of this model. We can analytically explain the stability of anti-phase states by means of a return map of firing times, which we propose in this paper. The resultant stability condition turns out to be quite simple. The phase diagram based on our theory shows that there are two types of anti-phase states. One of these cannot be seen in coupled integrate-and-fire models and is peculiar to resonate-and-fire models. The results of our theory coincide with those of numerical simulations.Comment: 15 pages, 8 figure

    Orbital selectivity of the kink in the dispersion of Sr2RuO4

    Get PDF
    We present detailed energy dispersions near the Fermi level on the monolayer perovskite ruthenate Sr2RuO4, determined by high-resolution angle-resolved photoemission spectroscopy. An orbital selectivity of the kink in the dispersion of Sr2RuO4 has been found: A kink for the Ru 4d_xy orbital is clearly observed, but not for the Ru 4d_yz and 4d_zx ones. The result provides insight into the origin of the kink.Comment: 5 pages, 4 figures. Accepted for publication in Phys. Rev.

    Proximity to Fermi-surface topological change in superconducting LaO0.54F0.46BiS2

    Get PDF
    The electronic structure of nearly optimally-doped novel superconductor LaO1x_{1-x}Fx_xBiS2_2 (x{\it x} = 0.46) was investigated using angle-resolved photoemission spectroscopy (ARPES). We clearly observed band dispersions from 2 to 6 eV binding energy and near the Fermi level (EF{\it E}_{\rm F}), which are well reproduced by first principles calculations when the spin-orbit coupling is taken into account. The ARPES intensity map near EF{\it E}_{\rm F} shows a square-like distribution around the Γ\Gamma(Z) point in addition to electronlike Fermi surface (FS) sheets around the X(R) point, indicating that FS of LaO0.54_{0.54}F0.46_{0.46}BiS2_2 is in close proximity to the theoretically-predicted topological change.Comment: 6 pages, 3 figures, + supplemental materia

    Radiomitigative Effects of Approved Hematopoietic Drugs on Mice Exposed to Lethal Total-body Irradiation

    Get PDF
    In cases of radiological accidents, especially for victims exposed to high-dose total-body irradiation (TBI), the administration of appropriate approved hematopoietic drugs is the most rapid medical treatment for preventing severe acute radiation syndrome, which is associated with a high mortality rate. However, at present, there are few suitable pharmaceutical drugs available in Japan, aside from granulocyte colony-stimulating factor (G-CSF). Depending on the situation surrounding the accident, various drug treatment options and the development of effective drug therapies may be required. In the present study, we assessed various combinations of seven commercially available drugs-G-CSF, erythropoietin (EPO), romiplostim (RP), ancer (AN), cepharanthine (CE), leucon (LC) and leukoprol (LP)-in mice exposed to a lethal dose of 7 or 8 Gy of X-ray irradiation. Each drug was administered as a single or mixed intraperitoneal injection once or twice daily for three consecutive days. The single administration of the approved hematopoietic drugs CE, LC, or LP twice a day for 3 days significantly improved the 30-day survival rate of lethal TBI mice (p < 0.05; 75%, 100%, or 100%, respectively) compared with the untreated TBI mice, accompanied by a gradual increase in the body weight. Furthermore, the combined administration of RP, EPO and G-CSF or single administration of RP alone gradually increased the body weight of mice exposed to lethal TBI, with 30-day survival rates of 75% or 100%, respectively (p < 0.05). This study suggested that some new domestically approved hematopoietic drugs may have radiomitigative potential for mice exposed to lethal TBI, and the 12-h interval administration of LC or LP for 3 days to 7-Gy-TBI mice and 12-h interval administration of RP alone for 3 days to 8-Gy-TBI mice were the most suitable medications with respect to the 30-day survival rate. As long as the threat of nuclear disaster exists, diverse efforts in thefield of radiation emergency medicine, including the development of effective drug therapies, will be necessary
    corecore