965 research outputs found

    Real-time content-aware texturing for deformable surfaces

    Get PDF
    Animation of models often introduces distortions to their parameterisation, as these are typically optimised for a single frame. The net effect is that under deformation, the mapped features, i.e. UV texture maps, bump maps or displacement maps, may appear to stretch or scale in an undesirable way. Ideally, what we would like is for the appearance of such features to remain feasible given any underlying deformation. In this paper we introduce a real-time technique that reduces such distortions based on a distortion control (rigidity) map. In two versions of our proposed technique, the parameter space is warped in either an axis or a non-axis aligned manner based on the minimisation of a non-linear distortion metric. This in turn is solved using a highly optimised hybrid CPU-GPU strategy. The result is real-time dynamic content-aware texturing that reduces distortions in a controlled way. The technique can be applied to reduce distortions in a variety of scenarios, including reusing a low geometric complexity animated sequence with a multitude of detail maps, dynamic procedurally defined features mapped on deformable geometry and animation authoring previews on texture-mapped models. © 2013 ACM

    PIH2 Caress: The Canadian Registry of Synagis (2005-2010)

    Get PDF

    K_{l 3} and \pi_{e 3} transition form factors

    Full text link
    Kℓ3K_{\ell 3} and πe3\pi_{e 3} transition form factors are calculated as an application of Dyson-Schwinger equations. The role of nonanalytic contributions to the quark--W-boson vertex is elucidated. A one-parameter model for this vertex provides a uniformly good description of these transitions, including the value of the scalar form factor of the kaon at the Callan-Treiman point. The Kℓ3K_{\ell 3} form factors, f±Kf_\pm^K, are approximately linear on t∈[me2,mÎŒ2]t\in [m_e^2,m_\mu^2] and have approximately the same slope. f−K(0)f_-^K(0) is a measure of the Euclidean constituent-quark mass ratio: MsE/MuEM^E_s/M^E_u. In the isospin symmetric limit: −f+π(0)=Fπ(t)-f_+^\pi(0)= F_\pi(t), the electromagnetic pion form factor, and f−π(t)≡0f_-^\pi(t)\equiv 0.Comment: 11 pages (incl. 3 figures), elsart.sty, epsf.st

    Mental health integrated care models in primary care settings and factors contributing to their effectiveness – a scoping review

    Get PDF
    Mental health services in the state of Victoria are fragmented and not fit for purpose thereby resulting in a large group of individuals with unmet mental health care needs. The Royal Commission recommended that collaboration and communication occur between services within and beyond the mental health system and that continuing research, evaluation and innovation be used to respond to community needs. General practitioners (GPs) serve as the gateways to the health service system in Australia and the most commonly discussed health problem with GPs relates to mental health. This review describes the models of integrated care within primary care settings similar to that of Australia that have been effective in improving mental health outcomes. It also outlines the factors that contributed to their effectiveness.The key elements of effective mental health integrated care models relevant to the Australian primary care setting are:Co-location in the primary care setting Presence of a licensed mental health clinician (MHC)Patient educationCollaborative practiceOngoing monitoringIntegrated electronic medical recordsThe key factors that contribute to the effectiveness of such models that may be relevant to the Australian primary care setting are:Development of sustainable funding mechanismsWillingness to accept and promote system changePresence of a care managerAdequate trainingStandardized workflow plan and care pathwaysConsolidated physical and mental clinical recordsHealthy organisational culture Regular supervision and supportServices that have succeeded in implementing integrated care models have the rather unique characteristics of a positive organisational culture and vision. Lessons learned from the Mental Health Nurse Incentive Program model and the use of online and digital tools such as the Initial Assessment and Referral-Decision Support Tool used in the Head to Health model could inform integrated care models suitable for Australian primary care settings

    Dissolution geology of organic materials on Saturn’s moon Titan: alien analogs of terrestrial karst

    Get PDF
    Karst or dissolution geology can occur whenever a circulating fluid can dissolve a geological material. On Earth, the “classical” karst definition is for limestone (CaCO3) in water (H2O), but other material/solvent combinations can create terrestrial dissolution terrain as well. These include so-called “evaporite karst materials” such as halite (NaCl)/H2O or gypsum (CaSO4)/H2O, dolomite (CaMg(CO3)2)/H2O, and even silica (SiO2)/H2O [Ford and Williams, 2007].  On Mars, there has been the suggestion of kieserite (MgSO4)/H2O system that may have formed in an earlier, wetter environment [Baroni and Sgavetta, 2013]. Saturn’s moon Titan extends the definition of karst to include non-aqueous liquids dissolving a landscape made of organic materials. The Cassini mission has provided evidence that Titan’s 1.5 bar nitrogen atmosphrere and cryogenic 94 K surface temperature supports a hydrocarbon-based cycle on Titan similar to the terrestrial water cycle. These circulating liquids may be capable of dissolving some of the surface organic molecules derived from Titan’s complex atmospheric photochemistry. Although under a different gravity, temperature, materials and fluid regime, many of the features on Titan’s surface bear striking resemblances to terrestrial karst terrains. Our investigations have focused on the labyrinth terrains of Titan. These are elevated plateaux of organic materials that appear similar to polygonal karst, tower karst, and fluviokarst on Earth [Malaska et al., 2010; 2017]. Remote sensing data is consistent with these plateaux being constructed of low-dielectric organic materials [Janssen et al. 2009; 2016; Malaska et al, 2016b]. Theoretical calculations followed by cryogenic laboratory experiments have shown that organic materials found on Titan’s surface will dissolve when subjected to Titan’s rainfall of methane-rich fluids [Raulin, 1987; Lorenz and Lunine, 1996; Malaska et al., 2010; 2011; Malaska and Hodyss, 2014; Cornet et al., 2015] and preliminary modelling has been able to reproduce some of the morphologies observed on Titan [Cornet et al., 2017]. Titan’s labyrinth terrains may originate as mixed organic windblown sediments that are later lithified in a process similar to calcite-cemented sandstone on Earth. Organic molecules and sediments produced by Titan’s rich organic photochemistry include organic molecules such as acetylene (C2H2), ethylene (C2H4), hydrogen cyanide (HCN),  benzene (C2H6), acrylonitrile (C2H3CN), acetonitrile (CH3CN), cyanoacetylene (HC2CN), other alkynes and nitriles, and a complex refractory organic materials similar to laboratory tholins. Once uplifted, the saturation equilibrium and kinetics of dissolution for each material and fluid combination affecting the plateau may play key roles in determining how the karstic system will evolve [Malaska et al., 2011; Cornet et al., 2015]. Some of the Titan organic minerals will dissolve, while some will be left behind as an insoluble lag deposit. Advanced laboratory investigations of organic materials on Titan is underway to further understand how these geological structures evolve and compare them with the formation processes of terrestrial analogs. We suggest that karst is a general planetary process wherever circulating fluids are capable of dissolving materials and developing subsurface drainage

    Chiral Behaviour of the Rho Meson in Lattice QCD

    Get PDF
    In order to guide the extrapolation of the mass of the rho meson calculated in lattice QCD with dynamical fermions, we study the contributions to its self-energy which vary most rapidly as the quark mass approaches zero; from the processes ρ→ωπ\rho \to \omega \pi and ρ→ππ\rho \to \pi \pi. It turns out that in analysing the most recent data from CP-PACS it is crucial to estimate the self-energy from ρ→ππ\rho \to \pi \pi using the same grid of discrete momenta as included implicitly in the lattice simulation. The correction associated with the continuum, infinite volume limit can then be found by calculating the corresponding integrals exactly. Our error analysis suggests that a factor of 10 improvement in statistics at the lowest quark mass for which data currently exists would allow one to determine the physical rho mass to within 5%. Finally, our analysis throws new light on a long-standing problem with the J-parameter.Comment: 13 pages, 7 figures. Full analytic forms of the self-energies are included and a correction in the omega-pi self-energ

    Electromagnetic form factors of light vector mesons

    Get PDF
    The electromagnetic form factors G_E(q^2), G_M(q^2), and G_Q(q^2), charge radii, magnetic and quadrupole moments, and decay widths of the light vector mesons rho^+, K^{*+} and K^{*0} are calculated in a Lorentz-covariant, Dyson-Schwinger equation based model using algebraic quark propagators that incorporate confinement, asymptotic freedom, and dynamical chiral symmetry breaking, and vector meson Bethe-Salpeter amplitudes closely related to the pseudoscalar amplitudes obtained from phenomenological studies of pi and K mesons. Calculated static properties of vector mesons include the charge radii and magnetic moments: r_{rho+} = 0.61 fm, r_{K*+} = 0.54 fm, and r^2_{K*0} = -0.048 fm^2; mu_{rho+} = 2.69, mu_{K*+} = 2.37, and mu_{K*0} = -0.40. The calculated static limits of the rho-meson form factors are similar to those obtained from light-front quantum mechanical calculations, but begin to differ above q^2 = 1 GeV^2 due to the dynamical evolution of the quark propagators in our approach.Comment: 8 pages of RevTeX, 5 eps figure

    The Quark-Photon Vertex and the Pion Charge Radius

    Full text link
    The rainbow truncation of the quark Dyson-Schwinger equation is combined with the ladder Bethe-Salpeter equation for the dressed quark-photon vertex to study the low-momentum behavior of the pion electromagnetic form factor. With model gluon parameters previously fixed by the pion mass and decay constant, the pion charge radius rπr_\pi is found to be in excellent agreement with the data. When the often-used Ball-Chiu Ansatz is used to construct the quark-photon vertex directly from the quark propagator, less than half of rπ2r_\pi^2 is generated. The remainder of rπ2r^2_\pi is seen to be attributable to the presence of the ρ\rho-pole in the solution of the ladder Bethe-Salpeter equation.Comment: 21 pages, 9 figure

    Sexual violence against women and children in Chinese societies

    Get PDF
    This article provides a comprehensive overview of the reported patterns of sexual violence against women and children in China. It reviews the prevalence of and risk factors for various types of sexual violence and discusses community knowledge and perceptions of these violent acts. It also critically examines three major problems of sexual violence research in China. First, the diversity of findings and study methods reported by surveys and criminal reports reflects the problems in obtaining accurate figures on the scope of the problem. Second, precautions must be taken in reading studies on Chinese culture-specific risk factors for domestic violence. Third, the study of culture-specific factors should not focus solely on cultural factors in a vacuum but rather, should examine traditional culture in the context of modern societies and consensus international standards of human rights. Recommendations for future research are also discussed. © 2009 Sage Publications.postprin
    • 

    corecore