48 research outputs found

    parallelMCMCcombine: An R Package for Bayesian Methods for Big Data and Analytics

    Full text link
    Recent advances in big data and analytics research have provided a wealth of large data sets that are too big to be analyzed in their entirety, due to restrictions on computer memory or storage size. New Bayesian methods have been developed for large data sets that are only large due to large sample sizes; these methods partition big data sets into subsets, and perform independent Bayesian Markov chain Monte Carlo analyses on the subsets. The methods then combine the independent subset posterior samples to estimate a posterior density given the full data set. These approaches were shown to be effective for Bayesian models including logistic regression models, Gaussian mixture models and hierarchical models. Here, we introduce the R package parallelMCMCcombine which carries out four of these techniques for combining independent subset posterior samples. We illustrate each of the methods using a Bayesian logistic regression model for simulation data and a Bayesian Gamma model for real data; we also demonstrate features and capabilities of the R package. The package assumes the user has carried out the Bayesian analysis and has produced the independent subposterior samples outside of the package. The methods are primarily suited to models with unknown parameters of fixed dimension that exist in continuous parameter spaces. We envision this tool will allow researchers to explore the various methods for their specific applications, and will assist future progress in this rapidly developing field.Comment: for published version see: http://www.plosone.org/article/fetchObject.action?uri=info%3Adoi%2F10.1371%2Fjournal.pone.0108425&representation=PD

    On the construction and properties of weak solutions describing dynamic cavitation

    Get PDF
    We consider the problem of dynamic cavity formation in isotropic compressible nonlinear elastic media. For the equations of radial elasticity we construct self-similar weak solutions that describe a cavity emanating from a state of uniform deformation. For dimensions d =2, 3 we show that cavity formation is necessarily associated with a unique precursor shock. We also study the bifurcation diagram and do a detailed analysis of the singular asymptotics associated to cavity initiation as a function of the cavity speed of the self-similar profiles. We show that for stress free cavities the critical stretching associated with dynamically cavitating solutions coincides with the critical stretching in the bifurcation diagram of equilibrium elasticity. Our analysis treats both stress-free cavities and cavities with contents
    corecore