10 research outputs found

    MOESM6 of A novel acetyl xylan esterase enabling complete deacetylation of substituted xylans

    No full text
    Additional file 6: Fig. S6. Screen of FjoAcXEA activity towards selected pNP alkyl esters showing activity on short chain (< C4) substrates consistent with esterase rather than lipase activity. Reactions (200 µL) contained 0.5 µg of FjoAcXE, 50 mM HEPES (pH 8.0), and 2 mM of each substrate. Absorbance at 410 nm was measured after 2 h at 30 °C. pNP acetate (C2), pNP butyrate (C4), pNP hexanoate (C6), pNP octanoate (C8), pNP decanoate (C10), pNP dodecanoate (C12), pNP myristate (C14), and pNP palmitate (C16). n = 3; error bars correspond to standard deviation

    MOESM4 of A novel acetyl xylan esterase enabling complete deacetylation of substituted xylans

    No full text
    Additional file 4: Fig. S4. FjoAcXE activity screen against 0.5% (w/v) of selected polysaccharides. Reactions (50 µL) contained 5 µg of FjoAcXE, 50 mM HEPES (pH 8.0), and 0.5% w/v of each substrate, and were incubated for 16 h at 30 °C. Reducing sugars were measured using 1% final PAHBAH reagent [58]. BEX = beechwood xylan (Sigma, X4252); OSX = oat spelt xylan (Sigma, X0627); CMC = carboxymethylcellulose (Megazyme, P-CMC4 M); β-glucan (low viscosity; from barley; Megazyme, P-BGBL); starch (from corn; Sigma-Aldrich, S4126); pectin (from apple; Sigma, 76282); WAX = wheat arabinoxylan (high viscosity; Megazyme, P-WAXYH); arabinan (from sugarbeet; Megazyme, P-ARAB); glucomannan (low viscosity; from konjac; Megazyme, P-GLCML); galactomannan (from guar, GD28; Megazyme, enzyme modified); xyloglucan (amyloid, from tamarind seed; Megazyme, P-XYGLN); arabinogalactan (acacia gum, Sigma, G9752)

    MOESM5 of A novel acetyl xylan esterase enabling complete deacetylation of substituted xylans

    No full text
    Additional file 5: Fig. S5. FjoAcXE activity screen against selected pNP substrates. Reactions (200 µL) contained 5 µg of FjoAcXE, 50 mM HEPES (pH 8.0), and 2 mM of each substrate. Absorbance was measured after 2 h at 30 °C

    Additional file 1: Figure S1. of Biochemical characterization of the xylan hydrolysis profile of the extracellular endo-xylanase from Geobacillus thermodenitrificans T12

    No full text
    FPLC purification of GtXynA1. Protein fraction not bound to the nickel column eluted with the first 65 mL eluent. Bound GtXynA1 protein was removed from the nickel column using a imidazole gradient (yellow line) which increased from 0 mM to 500 mM over a time span of 20 min (A). Fractions 22–25 were pooled and used for desalting the purified GtXynA1 (B). Fractions 8–10 of the desalting column were pooled and then used for further experiments. (DOCX 311 kb

    Additional file 2: Figure S2. of Biochemical characterization of the xylan hydrolysis profile of the extracellular endo-xylanase from Geobacillus thermodenitrificans T12

    No full text
    10% SDS-PAGE of purified endo-xylanase from G. thermodenitrificans T12 followed by PageBlue staining. Lane 1: Protein marker; Lane 2: Pellet fraction; Lane 3: cell-free extract; Lane 4: non-binding protein fraction from FPLC; Lane 5: Purified recombinant GtXynA1; Lane 6: Purified and desalted recombinant GtXynA1; Lane 7: Protein marker. (DOCX 614 kb

    MOESM1 of Boosting LPMO-driven lignocellulose degradation by polyphenol oxidase-activated lignin building blocks

    No full text
    Additional file 1: Figure S1. Activity of MtLPMO9B towards amorphous cellulose in the presence and absence of MtPPO7 or AbPPO. HPAEC elution pattern of regenerated amorphous cellulose (RAC; 1.5 mg mL−1) incubated with MtLPMO9B (red, 5.0 μg mL−1) only, or with either AbPPO (blue, 2.5 µL mL−1) or MtPPO7 (yellow, 5.0 μg mL−1) in the presence of (a) para-coumaric acid (no. 3 specified in Table 1, 2 mM) and (b) 3-hydroxy-4-methoxycinnamic acid (no. 5 specified in Table 1, 2 mM). The incubation of RAC with MtLPMO9B results in the formation of non-oxidized gluco-oligosaccharides (GlcOSn) and C1-oxidized gluco-oligosaccharides (GlcOS n # ). See “Methods” for details

    MOESM2 of Boosting LPMO-driven lignocellulose degradation by polyphenol oxidase-activated lignin building blocks

    No full text
    Additional file 2: Figure S2. Release of oligosaccharides from RAC incubated with MtLPMO9B in the presence and absence of MtPPO7 throughout 24 h. Samples were incubated in the presence of ferulic acid (no. 8 specified in Table 1). The total sum is shown as integrated peak areas of released non-oxidized (shaded red and shaded yellow) and C1-oxidized (red and yellow) gluco-oligosaccharides after incubation of regenerated amorphous cellulose (RAC; 1.5 mg mL−1) with MtLPMO9B only (red bars, 5 mg mL−1) and MtLPMO9B together with MtPPO7 (yellow bars, 5 mg mL−1) based on HPAEC. All incubations were performed in duplicate, and the standard deviations are presented as error bars. See “Methods” for details
    corecore