13 research outputs found

    Move to stay: genetic structure and demographic history of a wolf spider inhabiting coastal sand dunes of southern South America

    No full text
    Dispersal ability can enhance the probability of an organism surviving and reproducing, and affects the geographic structure of its genetic variability. Allocosa senex is a nocturnal sand-dwelling wolf spider strictly associated with oceanic, estuarine and freshwater sandy coast habitats of southern South America, including Uruguay, Brazil, and Argentina. Recent research has revealed the presence of diverse dispersal strategies, both aerial and aquatic. Here we investigated the genetic structure and demographic history of A. senex using sequences of the mitochondrial genome and genomic scanning using amplified fragment length polymorphisms (AFLPs). We hypothesized the presence of a weak population genetic structure in space because of high levels of gene flow. We analysed individuals from 21 localities from Uruguay, Argentina, and Brazil. We obtained 60 sequences for the cox1 (17 haplotypes) and 445 AFLP polymorphic loci of 90 individuals. The results were in agreement with our hypothesis. They revealed an absence of spatially structured genetic diversity, neither among localities nor among basins, suggesting little isolation by distance in the group. The mitochondrial gene tree was dated and age estimates revealed a recent origin of A. senex, which was traced back to the Middle Pleistocene. Both the mitochondrial star-like topology and the departures from neutrality, further supported by the lack of AFLP population structure and isolation by distance, are in agreement with a recent population expansion. Demographic changes could be related to climatic oscillations and geological changes undergone by the study area during the Pleistocene.</p

    The Atlantic connection: coastal habitat favoured long distance dispersal and colonization of Azores and Madeira by <i>Dysdera</i> spiders (Araneae: Dysderidae)

    No full text
    The woodlouse hunter Dysdera spiders have colonized all Macaronesian archipelagos. We report here for the first time an evolutionary connection between the Iberian Peninsula, Madeira, and the remote archipelago of Azores. Based on museum specimens from the 1950s, we describe the first endemic Dysdera species from the Azores. Additionally, we report the recent collection of immature individuals related yet probably not conspecific to the new species, rejecting previous suggestions that the endemic lineage had gone extinct. A multi-locus target phylogeny revealed that an undescribed species from Madeira was the closest relative to the Azores lineage, and that both island taxa were in turn sister to an Iberian endemic species, within a mostly Iberian clade. Interestingly, the Madeiran relative was not closely related to the remaining endemic species reported in the archipelago, suggesting an independent colonization. A divergence time estimation analysis unravelled that Dysdera colonized both archipelagos early after their emergence. The colonization pathway remains ambiguous, but the Iberian Peninsula acted as the ultimate source of the ancestral colonizers. Finally, we describe the new species Dysdera cetophonorum Crespo & Arnedo sp. nov. from Pico and Dysdera citauca Crespo & Arnedo, sp. nov. from Ilhéu de Cima (Porto Santo) and redescribe and illustrate the female genitalia for the first time of their poorly known closest relative, Dysdera flavitarsis Simon, 1882 from the north-western Iberian Peninsula. http://zoobank.org/urn:lsid:zoobank.org:pub:1E75CCEC-1632-4581-93A5-E61721970022</p

    Data_Sheet_4_Life-history traits drive spatial genetic structuring in Dinaric cave spiders.PDF

    No full text
    The subterranean ecosystem exerts strong selection pressures on the organisms that thrive in it. In response, obligate cave-dwellers have developed a series of morphological, physiological, and behavioral adaptations, such as eye reduction, appendage elongation, low metabolic rates or intermittent activity patterns, collectively referred to as troglomorphism. Traditionally, studies on cave organisms have been hampered by the difficulty of sampling (i.e., small population sizes, temporal heterogeneity in specimen occurrence, challenges imposed by the difficult-to-access nature of caves). Here, we circumvent this limitation by implementing a museomics approach. Specifically, we aim at comparing the genetic population structures of five cave spider species demonstrating contrasting life histories and levels of troglomorphism across different caves in the northern Dinarides (Balkans, Europe). We applied a genome-wide hybridization-capture approach (i.e., HyRAD) to capture DNA from 117 historical samples. By comparing the population genetic structures among five species and by studying isolation by distance, we identified deeper population structuring and more pronounced patterns of isolation by distance in the highly troglomorphic Parastalita stygia and Stalita pretneri ground dwellers, while the three web-building Troglohyphantes species, two of which can occasionally be found in surface habitats, showed less structured populations compatible with higher dispersal ability. The spatial distribution of genetic groups revealed common phylogeographic breaks among lineages across the studied species, which hint at the importance of environmental features in driving dispersal potential and shaping underground diversity.</p

    Table_1_Life-history traits drive spatial genetic structuring in Dinaric cave spiders.XLSX

    No full text
    The subterranean ecosystem exerts strong selection pressures on the organisms that thrive in it. In response, obligate cave-dwellers have developed a series of morphological, physiological, and behavioral adaptations, such as eye reduction, appendage elongation, low metabolic rates or intermittent activity patterns, collectively referred to as troglomorphism. Traditionally, studies on cave organisms have been hampered by the difficulty of sampling (i.e., small population sizes, temporal heterogeneity in specimen occurrence, challenges imposed by the difficult-to-access nature of caves). Here, we circumvent this limitation by implementing a museomics approach. Specifically, we aim at comparing the genetic population structures of five cave spider species demonstrating contrasting life histories and levels of troglomorphism across different caves in the northern Dinarides (Balkans, Europe). We applied a genome-wide hybridization-capture approach (i.e., HyRAD) to capture DNA from 117 historical samples. By comparing the population genetic structures among five species and by studying isolation by distance, we identified deeper population structuring and more pronounced patterns of isolation by distance in the highly troglomorphic Parastalita stygia and Stalita pretneri ground dwellers, while the three web-building Troglohyphantes species, two of which can occasionally be found in surface habitats, showed less structured populations compatible with higher dispersal ability. The spatial distribution of genetic groups revealed common phylogeographic breaks among lineages across the studied species, which hint at the importance of environmental features in driving dispersal potential and shaping underground diversity.</p

    Data_Sheet_2_Life-history traits drive spatial genetic structuring in Dinaric cave spiders.PDF

    No full text
    The subterranean ecosystem exerts strong selection pressures on the organisms that thrive in it. In response, obligate cave-dwellers have developed a series of morphological, physiological, and behavioral adaptations, such as eye reduction, appendage elongation, low metabolic rates or intermittent activity patterns, collectively referred to as troglomorphism. Traditionally, studies on cave organisms have been hampered by the difficulty of sampling (i.e., small population sizes, temporal heterogeneity in specimen occurrence, challenges imposed by the difficult-to-access nature of caves). Here, we circumvent this limitation by implementing a museomics approach. Specifically, we aim at comparing the genetic population structures of five cave spider species demonstrating contrasting life histories and levels of troglomorphism across different caves in the northern Dinarides (Balkans, Europe). We applied a genome-wide hybridization-capture approach (i.e., HyRAD) to capture DNA from 117 historical samples. By comparing the population genetic structures among five species and by studying isolation by distance, we identified deeper population structuring and more pronounced patterns of isolation by distance in the highly troglomorphic Parastalita stygia and Stalita pretneri ground dwellers, while the three web-building Troglohyphantes species, two of which can occasionally be found in surface habitats, showed less structured populations compatible with higher dispersal ability. The spatial distribution of genetic groups revealed common phylogeographic breaks among lineages across the studied species, which hint at the importance of environmental features in driving dispersal potential and shaping underground diversity.</p

    Data_Sheet_1_Life-history traits drive spatial genetic structuring in Dinaric cave spiders.PDF

    No full text
    The subterranean ecosystem exerts strong selection pressures on the organisms that thrive in it. In response, obligate cave-dwellers have developed a series of morphological, physiological, and behavioral adaptations, such as eye reduction, appendage elongation, low metabolic rates or intermittent activity patterns, collectively referred to as troglomorphism. Traditionally, studies on cave organisms have been hampered by the difficulty of sampling (i.e., small population sizes, temporal heterogeneity in specimen occurrence, challenges imposed by the difficult-to-access nature of caves). Here, we circumvent this limitation by implementing a museomics approach. Specifically, we aim at comparing the genetic population structures of five cave spider species demonstrating contrasting life histories and levels of troglomorphism across different caves in the northern Dinarides (Balkans, Europe). We applied a genome-wide hybridization-capture approach (i.e., HyRAD) to capture DNA from 117 historical samples. By comparing the population genetic structures among five species and by studying isolation by distance, we identified deeper population structuring and more pronounced patterns of isolation by distance in the highly troglomorphic Parastalita stygia and Stalita pretneri ground dwellers, while the three web-building Troglohyphantes species, two of which can occasionally be found in surface habitats, showed less structured populations compatible with higher dispersal ability. The spatial distribution of genetic groups revealed common phylogeographic breaks among lineages across the studied species, which hint at the importance of environmental features in driving dispersal potential and shaping underground diversity.</p

    Data_Sheet_7_Life-history traits drive spatial genetic structuring in Dinaric cave spiders.PDF

    No full text
    The subterranean ecosystem exerts strong selection pressures on the organisms that thrive in it. In response, obligate cave-dwellers have developed a series of morphological, physiological, and behavioral adaptations, such as eye reduction, appendage elongation, low metabolic rates or intermittent activity patterns, collectively referred to as troglomorphism. Traditionally, studies on cave organisms have been hampered by the difficulty of sampling (i.e., small population sizes, temporal heterogeneity in specimen occurrence, challenges imposed by the difficult-to-access nature of caves). Here, we circumvent this limitation by implementing a museomics approach. Specifically, we aim at comparing the genetic population structures of five cave spider species demonstrating contrasting life histories and levels of troglomorphism across different caves in the northern Dinarides (Balkans, Europe). We applied a genome-wide hybridization-capture approach (i.e., HyRAD) to capture DNA from 117 historical samples. By comparing the population genetic structures among five species and by studying isolation by distance, we identified deeper population structuring and more pronounced patterns of isolation by distance in the highly troglomorphic Parastalita stygia and Stalita pretneri ground dwellers, while the three web-building Troglohyphantes species, two of which can occasionally be found in surface habitats, showed less structured populations compatible with higher dispersal ability. The spatial distribution of genetic groups revealed common phylogeographic breaks among lineages across the studied species, which hint at the importance of environmental features in driving dispersal potential and shaping underground diversity.</p

    Table_3_Life-history traits drive spatial genetic structuring in Dinaric cave spiders.XLSX

    No full text
    The subterranean ecosystem exerts strong selection pressures on the organisms that thrive in it. In response, obligate cave-dwellers have developed a series of morphological, physiological, and behavioral adaptations, such as eye reduction, appendage elongation, low metabolic rates or intermittent activity patterns, collectively referred to as troglomorphism. Traditionally, studies on cave organisms have been hampered by the difficulty of sampling (i.e., small population sizes, temporal heterogeneity in specimen occurrence, challenges imposed by the difficult-to-access nature of caves). Here, we circumvent this limitation by implementing a museomics approach. Specifically, we aim at comparing the genetic population structures of five cave spider species demonstrating contrasting life histories and levels of troglomorphism across different caves in the northern Dinarides (Balkans, Europe). We applied a genome-wide hybridization-capture approach (i.e., HyRAD) to capture DNA from 117 historical samples. By comparing the population genetic structures among five species and by studying isolation by distance, we identified deeper population structuring and more pronounced patterns of isolation by distance in the highly troglomorphic Parastalita stygia and Stalita pretneri ground dwellers, while the three web-building Troglohyphantes species, two of which can occasionally be found in surface habitats, showed less structured populations compatible with higher dispersal ability. The spatial distribution of genetic groups revealed common phylogeographic breaks among lineages across the studied species, which hint at the importance of environmental features in driving dispersal potential and shaping underground diversity.</p

    Table_2_Life-history traits drive spatial genetic structuring in Dinaric cave spiders.XLSX

    No full text
    The subterranean ecosystem exerts strong selection pressures on the organisms that thrive in it. In response, obligate cave-dwellers have developed a series of morphological, physiological, and behavioral adaptations, such as eye reduction, appendage elongation, low metabolic rates or intermittent activity patterns, collectively referred to as troglomorphism. Traditionally, studies on cave organisms have been hampered by the difficulty of sampling (i.e., small population sizes, temporal heterogeneity in specimen occurrence, challenges imposed by the difficult-to-access nature of caves). Here, we circumvent this limitation by implementing a museomics approach. Specifically, we aim at comparing the genetic population structures of five cave spider species demonstrating contrasting life histories and levels of troglomorphism across different caves in the northern Dinarides (Balkans, Europe). We applied a genome-wide hybridization-capture approach (i.e., HyRAD) to capture DNA from 117 historical samples. By comparing the population genetic structures among five species and by studying isolation by distance, we identified deeper population structuring and more pronounced patterns of isolation by distance in the highly troglomorphic Parastalita stygia and Stalita pretneri ground dwellers, while the three web-building Troglohyphantes species, two of which can occasionally be found in surface habitats, showed less structured populations compatible with higher dispersal ability. The spatial distribution of genetic groups revealed common phylogeographic breaks among lineages across the studied species, which hint at the importance of environmental features in driving dispersal potential and shaping underground diversity.</p

    Data_Sheet_8_Life-history traits drive spatial genetic structuring in Dinaric cave spiders.PDF

    No full text
    The subterranean ecosystem exerts strong selection pressures on the organisms that thrive in it. In response, obligate cave-dwellers have developed a series of morphological, physiological, and behavioral adaptations, such as eye reduction, appendage elongation, low metabolic rates or intermittent activity patterns, collectively referred to as troglomorphism. Traditionally, studies on cave organisms have been hampered by the difficulty of sampling (i.e., small population sizes, temporal heterogeneity in specimen occurrence, challenges imposed by the difficult-to-access nature of caves). Here, we circumvent this limitation by implementing a museomics approach. Specifically, we aim at comparing the genetic population structures of five cave spider species demonstrating contrasting life histories and levels of troglomorphism across different caves in the northern Dinarides (Balkans, Europe). We applied a genome-wide hybridization-capture approach (i.e., HyRAD) to capture DNA from 117 historical samples. By comparing the population genetic structures among five species and by studying isolation by distance, we identified deeper population structuring and more pronounced patterns of isolation by distance in the highly troglomorphic Parastalita stygia and Stalita pretneri ground dwellers, while the three web-building Troglohyphantes species, two of which can occasionally be found in surface habitats, showed less structured populations compatible with higher dispersal ability. The spatial distribution of genetic groups revealed common phylogeographic breaks among lineages across the studied species, which hint at the importance of environmental features in driving dispersal potential and shaping underground diversity.</p
    corecore