28 research outputs found

    Advanced DNA Zipper Probes for Detecting Cell Membrane Lipid Domains

    No full text
    The cell membrane is a complex mixture of lipids, proteins, and other components. By forming dynamic lipid domains, different membrane molecules can selectively interact with each other to control cell signaling. Herein, we report several new types of lipid–DNA conjugates, termed as “DNA zippers”, which can be used to measure cell membrane dynamic interactions and the formation of lipid domains. Dependent on the choice of lipid moieties, cholesterol- and sphingomyelin-conjugated DNA zippers specifically locate in and detect membrane lipid-ordered domains, while in contrast, a tocopherol–DNA zipper can be applied for the selective imaging of lipid-disordered phases. These versatile and programmable probes can be further engineered into membrane competition assays to simultaneously detect multiple types of membrane dynamic interactions. These DNA zipper probes can be broadly used to study the correlation between lipid domains and various cellular processes, such as the epithelial–mesenchymal transition

    Programmable and Multiparameter DNA-Based Logic Platform For Cancer Recognition and Targeted Therapy

    No full text
    The specific inventory of molecules on diseased cell surfaces (e.g., cancer cells) provides clinicians an opportunity for accurate diagnosis and intervention. With the discovery of panels of cancer markers, carrying out analyses of multiple cell-surface markers is conceivable. As a trial to accomplish this, we have recently designed a DNA-based device that is capable of performing autonomous logic-based analysis of two or three cancer cell-surface markers. Combining the specific target-recognition properties of DNA aptamers with toehold-mediated strand displacement reactions, multicellular marker-based cancer analysis can be realized based on modular AND, OR, and NOT Boolean logic gates. Specifically, we report here a general approach for assembling these modular logic gates to execute programmable and higher-order profiling of multiple coexisting cell-surface markers, including several found on cancer cells, with the capacity to report a diagnostic signal and/or deliver targeted photodynamic therapy. The success of this strategy demonstrates the potential of DNA nanotechnology in facilitating targeted disease diagnosis and effective therapy

    Building a Nanostructure with Reversible Motions Using Photonic Energy

    No full text
    Recently, the specific hybridization of DNA molecules has been used to construct self-assembled devices, such as the mechanical device to mimic cellular protein motors in nature. Here, we present a new light-powered DNA mechanical device based on the photoisomerization of azobenzene moieties and toehold-mediated strand displacement. This autonomous and controllable device is capable of moving toward either end of the track, simply by switching the wavelength of light irradiation, either UV (365 nm) or visible (>450 nm). This light-controlled strategy can easily solve one main technical challenge for stepwise walking devices: the selection of routes in multipath systems. The principle employed in this study, photoisomerization-induced toehold length switching, could be further useful in the design of other mechanical devices, with the ultimate goal of rivaling molecular motors for cargo transport and macroscopic movement

    DNA Branch Migration Reactions Through Photocontrollable Toehold Formation

    No full text
    Strand displacement cascades are commonly used to make dynamically assembled structures. Particularly, the concept of “toehold-mediated DNA branch migration reactions” has attracted considerable attention in relation to dynamic DNA nanostructures. However, it is a challenge to obtain and control the formation of pure 1:1 ratio DNA duplexes with toehold structures. Here, for the first time, we report a photocontrolled toehold formation method, which is based on the photocleavage of 2-nitrobenzyl linker-embedded DNA hairpin precursor structures. UV light irradiation (λ ≈ 365 nm) of solutions containing these DNA hairpin structures causes the complete cleavage of the nitrobenzyl linker, and pure 1:1 DNA duplexes with toehold structures are easily formed. Our experimental results indicate that the amount of toehold can be controlled by simply changing the dose of UV irradiation and that the resulting toehold structures can be used for subsequent toehold-mediated DNA branch migration reactions, e.g., DNA hybridization chain reactions. This newly established method will find broad application in the construction of light-powered, controllable, and dynamic DNA nanostructures or large-scale DNA circuits

    DNA “Nano-Claw”: Logic-Based Autonomous Cancer Targeting and Therapy

    No full text
    Cell types, both healthy and diseased, can be classified by inventories of their cell-surface markers. Programmable analysis of multiple markers would enable clinicians to develop a comprehensive disease profile, leading to more accurate diagnosis and intervention. As a first step to accomplish this, we have designed a DNA-based device, called “Nano-Claw”. Combining the special structure-switching properties of DNA aptamers with toehold-mediated strand displacement reactions, this claw is capable of performing autonomous logic-based analysis of multiple cancer cell-surface markers and, in response, producing a diagnostic signal and/or targeted photodynamic therapy. We anticipate that this design can be widely applied in facilitating basic biomedical research, accurate disease diagnosis, and effective therapy

    Direct Visualization of Walking Motions of Photocontrolled Nanomachine on the DNA Nanostructure

    Get PDF
    A light-driven artificial molecular nanomachine was constructed based on DNA scaffolding. Pyrene-modified walking strands and disulfide bond-connected stator strands, employed as anchorage sites to support walker movement, were assembled into a 2D DNA tile. Pyrene molecules excited by photoirradiation at 350 nm induced cleavage of disulfide bond-connected stator strands, enabling the DNA walker to migrate from one cleaved stator to the next on the DNA tile. The time-dependent movement of the walker was observed and the entire walking process of the walker was characterized by distribution of the walker-stator duplex at four anchorage sites on the tile under different irradiation times. Importantly, the light-fuelled mechanical movements on DNA tile were first visualized in real time during UV irradiation using high-speed atomic force microscopy (HS-AFM)

    Direct Visualization of Walking Motions of Photocontrolled Nanomachine on the DNA Nanostructure

    Get PDF
    A light-driven artificial molecular nanomachine was constructed based on DNA scaffolding. Pyrene-modified walking strands and disulfide bond-connected stator strands, employed as anchorage sites to support walker movement, were assembled into a 2D DNA tile. Pyrene molecules excited by photoirradiation at 350 nm induced cleavage of disulfide bond-connected stator strands, enabling the DNA walker to migrate from one cleaved stator to the next on the DNA tile. The time-dependent movement of the walker was observed and the entire walking process of the walker was characterized by distribution of the walker-stator duplex at four anchorage sites on the tile under different irradiation times. Importantly, the light-fuelled mechanical movements on DNA tile were first visualized in real time during UV irradiation using high-speed atomic force microscopy (HS-AFM)

    Pyrene-Assisted Efficient Photolysis of Disulfide Bonds in DNA-Based Molecular Engineering

    No full text
    An efficient pyrene-assisted method has been developed for the photolysis of disulfide bonds, with 77% of disulfides cleaved after only 20 min of irradiation (0.3W) at 350 nm. By employing a DNA framework, it was possible to observe both a distance-dependent cleavage pathway and a radical-forming photoreaction mechanism. To demonstrate the biomedical applications of such pyrene disulfide molecular assemblies, a DNA micelle structure and DNAzyme analog were further studied. Rapid photodriven disassembly of DNA micelles was achieved, allowing the further design of controlled pharmaceutical release at the target region and at a specific time. The DNAzyme analog can carry out multiple turnover reactions that follow the Michaelis−Menten equation, with a kcat of 10.2 min−1 and a KM of 46.3 μM (0.3W 350 nm light source), comparable to that of common DNAzymes, e.g., 8−17 DNAzyme

    Photon-Regulated DNA-Enzymatic Nanostructures by Molecular Assembly

    No full text
    Future smart nanostructures will have to rely on molecular assembly for unique or advanced desired functions. For example, the evolved ribosome in nature is one example of functional self-assembly of nucleic acids and proteins employed in nature to perform specific tasks. Artificial self-assembled nanodevices have also been developed to mimic key biofunctions, and various nucleic acid- and protein-based functional nanoassemblies have been reported. However, functionally regulating these nanostructures is still a major challenge. Here we report a general approach to fine-tune the catalytic function of DNA-enzymatic nanosized assemblies by taking advantage of the trans–cis isomerization of azobenzene molecules. To the best of our knowledge, this is the first study to precisely modulate the structures and functions of an enzymatic assembly based on light-induced DNA scaffold switching. Via photocontrolled DNA conformational switching, the proximity of multiple enzyme catalytic centers can be adjusted, as well as the catalytic efficiency of cofactor-mediated DNAzymes. We expect that this approach will lead to the advancement of DNA-enzymatic functional nanostructures in future biomedical and analytical applications

    Nanotechnology in Plant Disease Management: DNA-Directed Silver Nanoparticles on Graphene Oxide as an Antibacterial against <i>Xanthomonas perforans</i>

    No full text
    Bacterial spot caused by <i>Xanthomonas perforans</i> is a major disease of tomatoes, leading to reduction in production by 10–50%. While copper (Cu)-based bactericides have been used for disease management, most of the <i>X. perforans</i> strains isolated from tomatoes in Florida and other locations worldwide are Cu-resistant. We have developed DNA-directed silver (Ag) nanoparticles (NPs) grown on graphene oxide (GO). These Ag@dsDNA@GO composites effectively decrease <i>X. perforans</i> cell viability in culture and on plants. At the very low concentration of 16 ppm of Ag@dsDNA@GO, composites show excellent antibacterial capability in culture with significant advantages in improved stability, enhanced antibacterial activity, and stronger adsorption properties. Application of Ag@dsDNA@GO at 100 ppm on tomato transplants in a greenhouse experiment significantly reduced the severity of bacterial spot disease compared to untreated plants, giving results similar to those of the current grower standard treatment, with no phytotoxicity
    corecore