12 research outputs found

    Phosphoproteomic Analysis Provides Novel Insights into Stress Responses in Phaeodactylum tricornutum, a Model Diatom

    No full text
    Protein phosphorylation on serine, threonine, and tyrosine (Ser/Thr/Tyr) is well established as a key regulatory posttranslational modification used in signal transduction to control cell growth, proliferation, and stress responses. However, little is known about its extent and function in diatoms. Phaeodactylum tricornutum is a unicellular marine diatom that has been used as a model organism for research on diatom molecular biology. Although more than 1000 protein kinases and phosphatases with specificity for Ser/Thr/Tyr residues have been predicted in P. tricornutum, no phosphorylation event has so far been revealed by classical biochemical approaches. Here, we performed a global phosphoproteomic analysis combining protein/peptide fractionation, TiO2 enrichment, and LC–MS/MS analyses. In total, we identified 264 unique phosphopeptides, including 434 in vivo phosphorylated sites on 245 phosphoproteins. The phosphorylated proteins were implicated in the regulation of diverse biological processes, including signaling, metabolic pathways, and stress responses. Six identified phosphoproteins were further validated by Western blotting using phospho-specific antibodies. The functions of these proteins are discussed in the context of signal transduction networks in P. tricornutum. Our results advance the current understanding of diatom biology and will be useful for elucidating the phosphor-relay signaling networks in this model diatom

    Global Phosphoproteomic Analysis Reveals Diverse Functions of Serine/Threonine/Tyrosine Phosphorylation in the Model Cyanobacterium <i>Synechococcus</i> sp. Strain PCC 7002

    No full text
    Increasing evidence shows that protein phosphorylation on serine (Ser), threonine (Thr), and tyrosine (Tyr) residues is one of the major post-translational modifications in the bacteria, involved in regulating a myriad of physiological processes. Cyanobacteria are one of the largest groups of bacteria and are the only prokaryotes capable of oxygenic photosynthesis. Many cyanobacteria strains contain unusually high numbers of protein kinases and phosphatases with specificity on Ser, Thr, and Tyr residues. However, only a few dozen phosphorylation sites in cyanobacteria are known, presenting a major obstacle for further understanding the regulatory roles of reversible phosphorylation in this group of bacteria. In this study, we carried out a global and site-specific phosphoproteomic analysis on the model cyanobacterium Synechococcus sp. PCC 7002. In total, 280 phosphopeptides and 410 phosphorylation sites from 245 Synechococcus sp. PCC 7002 proteins were identified through the combined use of protein/peptide prefractionation, TiO2 enrichment, and LC–MS/MS analysis. The identified phosphoproteins were functionally categorized into an interaction map and found to be involved in various biological processes such as two-component signaling pathway and photosynthesis. Our data provide the first global survey of phosphorylation in cyanobacteria by using a phosphoproteomic approach and suggest a wide-ranging regulatory scope of this modification. The provided data set may help reveal the physiological functions underlying Ser/Thr/Tyr phosphorylation and facilitate the elucidation of the entire signaling networks in cyanobacteria

    Global Phosphoproteomic Analysis Reveals Diverse Functions of Serine/Threonine/Tyrosine Phosphorylation in the Model Cyanobacterium <i>Synechococcus</i> sp. Strain PCC 7002

    No full text
    Increasing evidence shows that protein phosphorylation on serine (Ser), threonine (Thr), and tyrosine (Tyr) residues is one of the major post-translational modifications in the bacteria, involved in regulating a myriad of physiological processes. Cyanobacteria are one of the largest groups of bacteria and are the only prokaryotes capable of oxygenic photosynthesis. Many cyanobacteria strains contain unusually high numbers of protein kinases and phosphatases with specificity on Ser, Thr, and Tyr residues. However, only a few dozen phosphorylation sites in cyanobacteria are known, presenting a major obstacle for further understanding the regulatory roles of reversible phosphorylation in this group of bacteria. In this study, we carried out a global and site-specific phosphoproteomic analysis on the model cyanobacterium Synechococcus sp. PCC 7002. In total, 280 phosphopeptides and 410 phosphorylation sites from 245 Synechococcus sp. PCC 7002 proteins were identified through the combined use of protein/peptide prefractionation, TiO2 enrichment, and LC–MS/MS analysis. The identified phosphoproteins were functionally categorized into an interaction map and found to be involved in various biological processes such as two-component signaling pathway and photosynthesis. Our data provide the first global survey of phosphorylation in cyanobacteria by using a phosphoproteomic approach and suggest a wide-ranging regulatory scope of this modification. The provided data set may help reveal the physiological functions underlying Ser/Thr/Tyr phosphorylation and facilitate the elucidation of the entire signaling networks in cyanobacteria

    Global Phosphoproteomic Analysis Reveals Diverse Functions of Serine/Threonine/Tyrosine Phosphorylation in the Model Cyanobacterium <i>Synechococcus</i> sp. Strain PCC 7002

    No full text
    Increasing evidence shows that protein phosphorylation on serine (Ser), threonine (Thr), and tyrosine (Tyr) residues is one of the major post-translational modifications in the bacteria, involved in regulating a myriad of physiological processes. Cyanobacteria are one of the largest groups of bacteria and are the only prokaryotes capable of oxygenic photosynthesis. Many cyanobacteria strains contain unusually high numbers of protein kinases and phosphatases with specificity on Ser, Thr, and Tyr residues. However, only a few dozen phosphorylation sites in cyanobacteria are known, presenting a major obstacle for further understanding the regulatory roles of reversible phosphorylation in this group of bacteria. In this study, we carried out a global and site-specific phosphoproteomic analysis on the model cyanobacterium Synechococcus sp. PCC 7002. In total, 280 phosphopeptides and 410 phosphorylation sites from 245 Synechococcus sp. PCC 7002 proteins were identified through the combined use of protein/peptide prefractionation, TiO2 enrichment, and LC–MS/MS analysis. The identified phosphoproteins were functionally categorized into an interaction map and found to be involved in various biological processes such as two-component signaling pathway and photosynthesis. Our data provide the first global survey of phosphorylation in cyanobacteria by using a phosphoproteomic approach and suggest a wide-ranging regulatory scope of this modification. The provided data set may help reveal the physiological functions underlying Ser/Thr/Tyr phosphorylation and facilitate the elucidation of the entire signaling networks in cyanobacteria

    Phosphoproteomic Analysis Provides Novel Insights into Stress Responses in Phaeodactylum tricornutum, a Model Diatom

    No full text
    Protein phosphorylation on serine, threonine, and tyrosine (Ser/Thr/Tyr) is well established as a key regulatory posttranslational modification used in signal transduction to control cell growth, proliferation, and stress responses. However, little is known about its extent and function in diatoms. Phaeodactylum tricornutum is a unicellular marine diatom that has been used as a model organism for research on diatom molecular biology. Although more than 1000 protein kinases and phosphatases with specificity for Ser/Thr/Tyr residues have been predicted in P. tricornutum, no phosphorylation event has so far been revealed by classical biochemical approaches. Here, we performed a global phosphoproteomic analysis combining protein/peptide fractionation, TiO<sub>2</sub> enrichment, and LC–MS/MS analyses. In total, we identified 264 unique phosphopeptides, including 434 in vivo phosphorylated sites on 245 phosphoproteins. The phosphorylated proteins were implicated in the regulation of diverse biological processes, including signaling, metabolic pathways, and stress responses. Six identified phosphoproteins were further validated by Western blotting using phospho-specific antibodies. The functions of these proteins are discussed in the context of signal transduction networks in P. tricornutum. Our results advance the current understanding of diatom biology and will be useful for elucidating the phosphor-relay signaling networks in this model diatom

    Global Phosphoproteomic Analysis Reveals Diverse Functions of Serine/Threonine/Tyrosine Phosphorylation in the Model Cyanobacterium <i>Synechococcus</i> sp. Strain PCC 7002

    No full text
    Increasing evidence shows that protein phosphorylation on serine (Ser), threonine (Thr), and tyrosine (Tyr) residues is one of the major post-translational modifications in the bacteria, involved in regulating a myriad of physiological processes. Cyanobacteria are one of the largest groups of bacteria and are the only prokaryotes capable of oxygenic photosynthesis. Many cyanobacteria strains contain unusually high numbers of protein kinases and phosphatases with specificity on Ser, Thr, and Tyr residues. However, only a few dozen phosphorylation sites in cyanobacteria are known, presenting a major obstacle for further understanding the regulatory roles of reversible phosphorylation in this group of bacteria. In this study, we carried out a global and site-specific phosphoproteomic analysis on the model cyanobacterium <i>Synechococcus</i> sp. PCC 7002. In total, 280 phosphopeptides and 410 phosphorylation sites from 245 <i>Synechococcus</i> sp. PCC 7002 proteins were identified through the combined use of protein/peptide prefractionation, TiO<sub>2</sub> enrichment, and LC–MS/MS analysis. The identified phosphoproteins were functionally categorized into an interaction map and found to be involved in various biological processes such as two-component signaling pathway and photosynthesis. Our data provide the first global survey of phosphorylation in cyanobacteria by using a phosphoproteomic approach and suggest a wide-ranging regulatory scope of this modification. The provided data set may help reveal the physiological functions underlying Ser/Thr/Tyr phosphorylation and facilitate the elucidation of the entire signaling networks in cyanobacteria

    Global Phosphoproteomic Analysis Reveals Diverse Functions of Serine/Threonine/Tyrosine Phosphorylation in the Model Cyanobacterium <i>Synechococcus</i> sp. Strain PCC 7002

    No full text
    Increasing evidence shows that protein phosphorylation on serine (Ser), threonine (Thr), and tyrosine (Tyr) residues is one of the major post-translational modifications in the bacteria, involved in regulating a myriad of physiological processes. Cyanobacteria are one of the largest groups of bacteria and are the only prokaryotes capable of oxygenic photosynthesis. Many cyanobacteria strains contain unusually high numbers of protein kinases and phosphatases with specificity on Ser, Thr, and Tyr residues. However, only a few dozen phosphorylation sites in cyanobacteria are known, presenting a major obstacle for further understanding the regulatory roles of reversible phosphorylation in this group of bacteria. In this study, we carried out a global and site-specific phosphoproteomic analysis on the model cyanobacterium <i>Synechococcus</i> sp. PCC 7002. In total, 280 phosphopeptides and 410 phosphorylation sites from 245 <i>Synechococcus</i> sp. PCC 7002 proteins were identified through the combined use of protein/peptide prefractionation, TiO<sub>2</sub> enrichment, and LC–MS/MS analysis. The identified phosphoproteins were functionally categorized into an interaction map and found to be involved in various biological processes such as two-component signaling pathway and photosynthesis. Our data provide the first global survey of phosphorylation in cyanobacteria by using a phosphoproteomic approach and suggest a wide-ranging regulatory scope of this modification. The provided data set may help reveal the physiological functions underlying Ser/Thr/Tyr phosphorylation and facilitate the elucidation of the entire signaling networks in cyanobacteria

    Global Phosphoproteomic Analysis Reveals Diverse Functions of Serine/Threonine/Tyrosine Phosphorylation in the Model Cyanobacterium <i>Synechococcus</i> sp. Strain PCC 7002

    No full text
    Increasing evidence shows that protein phosphorylation on serine (Ser), threonine (Thr), and tyrosine (Tyr) residues is one of the major post-translational modifications in the bacteria, involved in regulating a myriad of physiological processes. Cyanobacteria are one of the largest groups of bacteria and are the only prokaryotes capable of oxygenic photosynthesis. Many cyanobacteria strains contain unusually high numbers of protein kinases and phosphatases with specificity on Ser, Thr, and Tyr residues. However, only a few dozen phosphorylation sites in cyanobacteria are known, presenting a major obstacle for further understanding the regulatory roles of reversible phosphorylation in this group of bacteria. In this study, we carried out a global and site-specific phosphoproteomic analysis on the model cyanobacterium <i>Synechococcus</i> sp. PCC 7002. In total, 280 phosphopeptides and 410 phosphorylation sites from 245 <i>Synechococcus</i> sp. PCC 7002 proteins were identified through the combined use of protein/peptide prefractionation, TiO<sub>2</sub> enrichment, and LC–MS/MS analysis. The identified phosphoproteins were functionally categorized into an interaction map and found to be involved in various biological processes such as two-component signaling pathway and photosynthesis. Our data provide the first global survey of phosphorylation in cyanobacteria by using a phosphoproteomic approach and suggest a wide-ranging regulatory scope of this modification. The provided data set may help reveal the physiological functions underlying Ser/Thr/Tyr phosphorylation and facilitate the elucidation of the entire signaling networks in cyanobacteria

    Global Phosphoproteomic Analysis Reveals Diverse Functions of Serine/Threonine/Tyrosine Phosphorylation in the Model Cyanobacterium <i>Synechococcus</i> sp. Strain PCC 7002

    No full text
    Increasing evidence shows that protein phosphorylation on serine (Ser), threonine (Thr), and tyrosine (Tyr) residues is one of the major post-translational modifications in the bacteria, involved in regulating a myriad of physiological processes. Cyanobacteria are one of the largest groups of bacteria and are the only prokaryotes capable of oxygenic photosynthesis. Many cyanobacteria strains contain unusually high numbers of protein kinases and phosphatases with specificity on Ser, Thr, and Tyr residues. However, only a few dozen phosphorylation sites in cyanobacteria are known, presenting a major obstacle for further understanding the regulatory roles of reversible phosphorylation in this group of bacteria. In this study, we carried out a global and site-specific phosphoproteomic analysis on the model cyanobacterium <i>Synechococcus</i> sp. PCC 7002. In total, 280 phosphopeptides and 410 phosphorylation sites from 245 <i>Synechococcus</i> sp. PCC 7002 proteins were identified through the combined use of protein/peptide prefractionation, TiO<sub>2</sub> enrichment, and LC–MS/MS analysis. The identified phosphoproteins were functionally categorized into an interaction map and found to be involved in various biological processes such as two-component signaling pathway and photosynthesis. Our data provide the first global survey of phosphorylation in cyanobacteria by using a phosphoproteomic approach and suggest a wide-ranging regulatory scope of this modification. The provided data set may help reveal the physiological functions underlying Ser/Thr/Tyr phosphorylation and facilitate the elucidation of the entire signaling networks in cyanobacteria

    Global Phosphoproteomic Analysis Reveals Diverse Functions of Serine/Threonine/Tyrosine Phosphorylation in the Model Cyanobacterium <i>Synechococcus</i> sp. Strain PCC 7002

    No full text
    Increasing evidence shows that protein phosphorylation on serine (Ser), threonine (Thr), and tyrosine (Tyr) residues is one of the major post-translational modifications in the bacteria, involved in regulating a myriad of physiological processes. Cyanobacteria are one of the largest groups of bacteria and are the only prokaryotes capable of oxygenic photosynthesis. Many cyanobacteria strains contain unusually high numbers of protein kinases and phosphatases with specificity on Ser, Thr, and Tyr residues. However, only a few dozen phosphorylation sites in cyanobacteria are known, presenting a major obstacle for further understanding the regulatory roles of reversible phosphorylation in this group of bacteria. In this study, we carried out a global and site-specific phosphoproteomic analysis on the model cyanobacterium <i>Synechococcus</i> sp. PCC 7002. In total, 280 phosphopeptides and 410 phosphorylation sites from 245 <i>Synechococcus</i> sp. PCC 7002 proteins were identified through the combined use of protein/peptide prefractionation, TiO<sub>2</sub> enrichment, and LC–MS/MS analysis. The identified phosphoproteins were functionally categorized into an interaction map and found to be involved in various biological processes such as two-component signaling pathway and photosynthesis. Our data provide the first global survey of phosphorylation in cyanobacteria by using a phosphoproteomic approach and suggest a wide-ranging regulatory scope of this modification. The provided data set may help reveal the physiological functions underlying Ser/Thr/Tyr phosphorylation and facilitate the elucidation of the entire signaling networks in cyanobacteria
    corecore