4 research outputs found

    Additional file 1 of Adverse outcomes after non-hepatic surgeries in patients with alcoholic liver diseases: a propensity-score matched study

    No full text
    Additional file 1. Table S1. Codes of liver-related surgical procedure. Table S2. Liver-related characteristics of surgical patients with and without preoperative alcoholic liver disease. Table S3. Risks of postoperative mortality for surgical patients with the severity of alcoholic liver disease. Table S4. Risks of postoperative adverse events for surgical patients with the severity of alcoholic liver diseas

    Apple Polyphenol Phloretin Inhibits Colorectal Cancer Cell Growth via Inhibition of the Type 2 Glucose Transporter and Activation of p53-Mediated Signaling

    No full text
    Glucose transporters (GLUTs) are required for glucose uptake in malignant cells, and they can be used as molecular targets for cancer therapy. An RT-PCR analysis was performed to investigate the mRNA levels of 14 subtypes of GLUTs in human colorectal cancer (COLO 205 and HT-29) and normal (FHC) cells. RT-PCR (<i>n</i> = 27) was used to assess the differences in paired tissue samples (tumor vs normal) isolated from colorectal cancer patients. GLUT2 was detected in all tested cells. The average GLUT2 mRNA level in 12 of 27 (44.4%) cases was 2.4-fold higher in tumor compared to normal tissues (*, <i>p</i> = 0.027). Higher GLUT2 mRNA expression was preferentially detected in advanced-stage tumors (stage 0 vs 3 = 16.38-fold, 95% CI = 9.22–26.54-fold; *, <i>p</i> = 0.029). The apple polyphenol phloretin (Ph) and siRNA methods were used to inhibit GLUT2 protein expression. Ph (0–100 μM, for 24 h) induced COLO 205 cell growth cycle arrest in a p53-dependent manner, which was confirmed by pretreatment of the cells with a p53-specific dominant negative expression vector. Hepatocyte nuclear factor 6 (HNF6), which was previously reported to be a transcription factor that activates GLUT2 and p53, was also induced by Ph (0–100 μM, for 24 h). The antitumor effect of Ph (25 mg/kg or DMSO twice a week for 6 weeks) was demonstrated in vivo using BALB/c nude mice bearing COLO 205 tumor xenografts. In conclusion, targeting GLUT2 could potentially suppress colorectal tumor cell invasiveness

    Pu-erh Tea Extract Attenuates Nicotine-Induced Foam Cell Formation in Primary Cultured Monocytes: An in Vitro Mechanistic Study

    No full text
    In this study, the mechanisms by which pu-erh tea extract (PETE) attenuates nicotine-induced foam cell formation were investigated. Monocytes were purified from healthy individuals using commercial antibodies coated with magnetic beads. We found that the nicotine-induced (1–10 μM) expression of oxidized low-density lipoprotein receptors (ox-LDLRs) and α9-nAchRs in monocytes was significantly attenuated by 24 h of PETE (10 μg/mL; ∗, <i>p</i> < 0.05) cotreatment. Nicotine (1 μM for 24 h) significantly induced the expression of the surface adhesion molecule ICAM-1 and the monocyte integrin adhesion molecule (CD11b) by human umbilical vein endothelial cells (HUVECs) and triggered monocytes to differentiate into macrophages via interactions with the endothelium. After treatment with nicotine (0.1–10 μM for 24 h), the HUVECs released chemotactic factors (IL-8) to attract monocytes into the tunica intima of the artery, and the monocytes then transformed into foam cells. We demonstrated that PETE treatment (>1 μg/mL for 24 h; ∗, <i>p</i> < 0.05) significantly attenuates nicotine-induced (1 μM) monocyte migration toward HUVECs and foam cell formation. This study suggests that tea components effectively attenuate the initial step (foam cell formation) of nicotine-induced atherosclerosis in circulating monocytes
    corecore