153 research outputs found

    Emotional modulation of visual cortex activity: A functional nearinfrared spectroscopy study

    Get PDF
    Functional neuroimaging and electroencephalography reveal emotional effects in early visual cortex. Here, we used fNIRS to examine haemodynamic responses evoked by neutral, positive and negative emotional pictures, matched for brightness, contrast, hue, saturation, spatial frequency and entropy. Emotion content modulated amplitude and latency of oxy-, deoxy- and total haemoglobin response peaks, and induced peripheral autonomic reactions. The processing of positive and negative pictures enhanced haemodynamic response amplitude, and this effect was paralleled by blood pressure changes. The processing of positive pictures was reflected in reduced haemodynamic response peak latency. Together these data suggest early visual cortex holds amplitude-dependent representation of stimulus salience and latency-dependent information regarding stimulus valence, providing new insight into affective interaction with sensory processing

    Fear from the heart: sensitivity to fear stimuli depends on individual heartbeats

    Get PDF
    Cognitions and emotions can be influenced by bodily physiology. Here, we investigated whether the processing of brief fear stimuli is selectively gated by their timing in relation to individual heartbeats. Emotional and neutral faces were presented to human volunteers at cardiac systole, when ejection of blood from the heart causes arterial baroreceptors to signal centrally the strength and timing of each heartbeat, and at diastole, the period between heartbeats when baroreceptors are quiescent. Participants performed behavioral and neuroimaging tasks to determine whether these interoceptive signals influence the detection of emotional stimuli at the threshold of conscious awareness and alter judgments of emotionality of fearful and neutral faces. Our results show that fearful faces were detected more easily and were rated as more intense at systole than at diastole. Correspondingly, amygdala responses were greater to fearful faces presented at systole relative to diastole. These novel findings highlight a major channel by which short-term interoceptive fluctuations enhance perceptual and evaluative processes specifically related to the processing of fear and threat and counter the view that baroreceptor afferent signaling is always inhibitory to sensory perception

    Slow breathing and hypoxic challenge: cardiorespiratory consequences and their central neural substrates

    Get PDF
    Controlled slow breathing (at 6/min, a rate frequently adopted during yoga practice) can benefit cardiovascular function, including responses to hypoxia. We tested the neural substrates of cardiorespiratory control in humans during volitional controlled breathing and hypoxic challenge using functional magnetic resonance imaging (fMRI). Twenty healthy volunteers were scanned during paced (slow and normal rate) breathing and during spontaneous breathing of normoxic and hypoxic (13% inspired O2) air. Cardiovascular and respiratory measures were acquired concurrently, including beat-to-beat blood pressure from a subset of participants (N = 7). Slow breathing was associated with increased tidal ventilatory volume. Induced hypoxia raised heart rate and suppressed heart rate variability. Within the brain, slow breathing activated dorsal pons, periaqueductal grey matter, cerebellum, hypothalamus, thalamus and lateral and anterior insular cortices. Blocks of hypoxia activated mid pons, bilateral amygdalae, anterior insular and occipitotemporal cortices. Interaction between slow breathing and hypoxia was expressed in ventral striatal and frontal polar activity. Across conditions, within brainstem, dorsal medullary and pontine activity correlated with tidal volume and inversely with heart rate. Activity in rostroventral medulla correlated with beat-to-beat blood pressure and heart rate variability. Widespread insula and striatal activity tracked decreases in heart rate, while subregions of insular cortex correlated with momentary increases in tidal volume. Our findings define slow breathing effects on central and cardiovascular responses to hypoxic challenge. They highlight the recruitment of discrete brainstem nuclei to cardiorespiratory control, and the engagement of corticostriatal circuitry in support of physiological responses that accompany breathing regulation during hypoxic challenge

    Acute tryptophan depletion attenuates conscious appraisal of social emotional signals in healthy female volunteers

    Get PDF
    Rationale: Acute tryptophan depletion (ATD) decreases levels of central serotonin. ATD thus enables the cognitive effects of serotonin to be studied, with implications for the understanding of psychiatric conditions, including depression. Objective: To determine the role of serotonin in conscious (explicit) and unconscious/incidental processing of emotional information. Materials and methods: A randomized, double-blind, cross-over design was used with 15 healthy female participants. Subjective mood was recorded at baseline and after 4 h, when participants performed an explicit emotional face processing task, and a task eliciting unconscious processing of emotionally aversive and neutral images presented subliminally using backward masking. Results: ATD was associated with a robust reduction in plasma tryptophan at 4 h but had no effect on mood or autonomic physiology. ATD was associated with significantly lower attractiveness ratings for happy faces and attenuation of intensity/arousal ratings of angry faces. ATD also reduced overall reaction times on the unconscious perception task, but there was no interaction with emotional content of masked stimuli. ATD did not affect breakthrough perception (accuracy in identification) of masked images. Conclusions: ATD attenuates the attractiveness of positive faces and the negative intensity of threatening faces, suggesting that serotonin contributes specifically to the appraisal of the social salience of both positive and negative salient social emotional cues. We found no evidence that serotonin affects unconscious processing of negative emotional stimuli. These novel findings implicate serotonin in conscious aspects of active social and behavioural engagement and extend knowledge regarding the effects of ATD on emotional perception
    • …
    corecore