16 research outputs found
A brighter side to thalidomide: its potential use in immunological disorders
Thalidomide and its derivatives are immunomodulatory drugs (IMiDs) known for their sedative, teratogenic, anti-angiogenic, and anti-inflammatory properties. Commonly used in the treatment of cancers such as Multiple Myeloma and Myelodysplastic Syndrome, IMiDs have also been used in the treatment of an inflammatory skin pathology associated with Hansen’s disease/Leprosy and show promise in the treatment of autoimmune disorders including Systemic Lupus Erythmatosus and Inflammatory Bowel Disease. Recent structural and experimental observations have revolutionized our understanding of these properties by revealing the fundamental molecular events underpinning IMiD activity. Here, we review these findings, their relevance to IMiD therapy in immunological disorders, and discuss how further research might unlock the vast clinical potential of these compounds
Making sense of IL-6 signalling cues in pathophysiology
Unravelling the molecular mechanisms that account for functional pleiotropy is a major challenge for researchers in cytokine biology. Cytokine–receptor cross-reactivity and shared signalling pathways are considered primary drivers of cytokine pleiotropy. However, reports epitomized by studies of Jak-STAT cytokine signalling identify interesting biochemical and epigenetic determinants of transcription factor regulation that affect the delivery of signal-dependent cytokine responses. Here, a regulatory interplay between STAT transcription factors and their convergence to specific genomic enhancers support the fine-tuning of cytokine responses controlling host immunity, functional identity, and tissue homeostasis and repair. In this review, we provide an overview of the signalling networks that shape the way cells sense and interpret cytokine cues. With an emphasis on the biology of interleukin-6, we highlight the importance of these mechanisms to both physiological processes and pathophysiological outcomes
Humanized cereblon mice reveal two distinct pathways of immunomodulatory drugs
Immunomodulatory drugs (IMiDs), including thalidomide derivatives such as lenalidomide and pomalidomide, offer therapeutic benefit in several hematopoietic malignancies and autoimmune/inflammatory diseases. However, it is difficult to study the IMiD mechanism of action in murine disease models because murine cereblon (CRBN), the substrate receptor for IMiD action, is resistant to some of IMiDs therapeutic effects. To overcome this difficulty, we generated humanized cereblon (CRBNI391V) mice thereby providing an animal model to unravel complex mechanisms of action in a murine physiological setup. In our current study, we investigated the degradative effect toward IKZF1 and CK-1α, a target substrate of IMiDs. Unlike WT mice which were resistant to lenalidomide and pomalidomide, T lymphocytes from CRBNI391V mice responded with a higher degree of IKZF1 and CK-1α protein degradation. Furthermore, IMiDs resulted in an increase in IL-2 among CRBNI391V mice but not in the WT group. We have also tested a thalidomide derivative, FPFT-2216, which showed an inhibitory effect toward IKZF1 protein level. As opposed to pomalidomide, FPFT-2216 and lenalidomide degrades CK-1α. Additionally, we assessed the potential therapeutic effects of IMiDs in dextran sodium sulfate (DSS)-induced colitis. In both WT and humanized mice, lenalidomide showed a significant therapeutic effect in the DSS model of colitis, while the effect of pomalidomide was less pronounced. Thus, while IMiDs’ degradative effect on IKZF1 and CK-1α, and up-regulation of IL-2, is dependent on CRBN, the therapeutic benefit of IMiDs in a mouse model of inflammatory bowel disease occurs through a CRBN–IMiD binding region independent pathway
A non-canonical scaffold-type E3 ligase complex mediates protein UFMylation
Protein UFMylation, i.e., post‐translational modification with ubiquitin‐fold modifier 1 (UFM1), is essential for cellular and endoplasmic reticulum homeostasis. Despite its biological importance, we have a poor understanding of how UFM1 is conjugated onto substrates. Here, we use a rebuilding approach to define the minimal requirements of protein UFMylation. We find that the reported cognate E3 ligase UFL1 is inactive on its own and instead requires the adaptor protein UFBP1 to form an active E3 ligase complex. Structure predictions suggest the UFL1/UFBP1 complex to be made up of winged helix (WH) domain repeats. We show that UFL1/UFBP1 utilizes a scaffold‐type E3 ligase mechanism that activates the UFM1‐conjugating E2 enzyme, UFC1, for aminolysis. Further, we characterize a second adaptor protein CDK5RAP3 that binds to and forms an integral part of the ligase complex. Unexpectedly, we find that CDK5RAP3 inhibits UFL1/UFBP1 ligase activity in vitro. Results from reconstituting ribosome UFMylation suggest that CDK5RAP3 functions as a substrate adaptor that directs UFMylation to the ribosomal protein RPL26. In summary, our reconstitution approach reveals the biochemical basis of UFMylation and regulatory principles of this atypical E3 ligase complex
The UFM1 E3 ligase recognizes and releases 60S ribosomes from ER translocons
Stalled ribosomes at the endoplasmic reticulum (ER) are covalently modified with the ubiquitin-like protein UFM1 on the 60S ribosomal subunit protein RPL26 (also known as uL24) 1,2. This modification, which is known as UFMylation, is orchestrated by the UFM1 ribosome E3 ligase (UREL) complex, comprising UFL1, UFBP1 and CDK5RAP3 (ref. 3). However, the catalytic mechanism of UREL and the functional consequences of UFMylation are unclear. Here we present cryo-electron microscopy structures of UREL bound to 60S ribosomes, revealing the basis of its substrate specificity. UREL wraps around the 60S subunit to form a C-shaped clamp architecture that blocks the tRNA-binding sites at one end, and the peptide exit tunnel at the other. A UFL1 loop inserts into and remodels the peptidyl transferase centre. These features of UREL suggest a crucial function for UFMylation in the release and recycling of stalled or terminated ribosomes from the ER membrane. In the absence of functional UREL, 60S–SEC61 translocon complexes accumulate at the ER membrane, demonstrating that UFMylation is necessary for releasing SEC61 from 60S subunits. Notably, this release is facilitated by a functional switch of UREL from a ‘writer’ to a ‘reader’ module that recognizes its product—UFMylated 60S ribosomes. Collectively, we identify a fundamental role for UREL in dissociating 60S subunits from the SEC61 translocon and the basis for UFMylation in regulating protein homeostasis at the ER.</p
The UFM1 E3 ligase recognizes and releases 60S ribosomes from ER translocons
Stalled ribosomes at the endoplasmic reticulum (ER) are covalently modified with the ubiquitin-like protein UFM1 on the 60S ribosomal subunit protein RPL26 (also known as uL24) 1,2. This modification, which is known as UFMylation, is orchestrated by the UFM1 ribosome E3 ligase (UREL) complex, comprising UFL1, UFBP1 and CDK5RAP3 (ref. 3). However, the catalytic mechanism of UREL and the functional consequences of UFMylation are unclear. Here we present cryo-electron microscopy structures of UREL bound to 60S ribosomes, revealing the basis of its substrate specificity. UREL wraps around the 60S subunit to form a C-shaped clamp architecture that blocks the tRNA-binding sites at one end, and the peptide exit tunnel at the other. A UFL1 loop inserts into and remodels the peptidyl transferase centre. These features of UREL suggest a crucial function for UFMylation in the release and recycling of stalled or terminated ribosomes from the ER membrane. In the absence of functional UREL, 60S–SEC61 translocon complexes accumulate at the ER membrane, demonstrating that UFMylation is necessary for releasing SEC61 from 60S subunits. Notably, this release is facilitated by a functional switch of UREL from a ‘writer’ to a ‘reader’ module that recognizes its product—UFMylated 60S ribosomes. Collectively, we identify a fundamental role for UREL in dissociating 60S subunits from the SEC61 translocon and the basis for UFMylation in regulating protein homeostasis at the ER.</p
Th1 cells alter the inflammatory signature of IL-6 by channeling STAT transcription factors to Alu-like retroelements
Cytokines that signal via STAT1 and STAT3 transcription factors instruct decisions affecting tissue homeostasis, anti-microbial host defense, and inflammation-induced tissue injury. To understand the coordination of these activities, we applied RNA-seq, ChIP-seq, and ATAC-seq to identify the transcriptional output of STAT1 and STAT3 in peritoneal tissues during acute resolving inflammation and inflammation primed to drive fibrosis. Bioinformatics focussed on the transcriptional signature of the immuno-modulatory cytokine IL-6 in both settings and examined how pro-fibrotic IFNg- secreting CD4+ T-cells altered the interpretation of STAT1 and STAT3 cytokine cues. In resolving inflammation, STAT1 and STAT3 cooperated to drive stromal gene expression affecting anti-microbial immunity and tissue homeostasis. The introduction of IFNg-secreting CD4+ T-cells altered this transcriptional program and channeled STAT1 and STAT3 to a previously latent GAS motif in Alu-like elements. STAT1 and STAT3 binding to this conserved sequence revealed evidence of reciprocal cross-regulation and gene signatures relevant to pathophysiology. Thus, we propose that effector T-cells re-tune the transcriptional output of IL-6 by shaping a regulatory interplay between STAT1 and STAT3 in inflammation