442 research outputs found
Pragmatic approach to cure profile enhancement for improved fatigue performance of thermoset matrix composites:Paper
Insulin-like Growth Factor Binding Protein 7 Mediates Glioma Cell Growth and Migration
Insulin-like growth factor binding protein 7 (IGFBP-7) is the only member of the IGFBP superfamily that binds strongly to insulin, suggesting that IGFBP-7 may have different functions from other IGFBPs. Unlike other IGFBPs, the expression and functions of IGFBP-7 in glioma tumors have not been reported. Using cDNA microarray analysis, we found that expression of IGFBP-7 correlated with the grade of glioma tumors and the overall patient survival. This finding was further validated by real-time reverse transcription-polymerase chain reaction and Western blot analysis. We used RNAi to examine the role of IGFBP-7 in glioma cells, inhibiting IGFBP-7 expression by short interfering RNA transfection. Cell proliferation was suppressed after IGFBP-7 expression was inhibited for 5 days, and glioma cell growth was stimulated consistently by the addition of recombinant IGFBP-7 protein. Moreover, glioma cell migration was attenuated by IGFBP-7 depletion but enhanced by IGFBP-7 overexpression and addition. Overexpression of AKT1 in IGFBP-7-overxpressed cells attenuated the IGFBP-7-promoted migration and further enhanced inhibition of IGFBP-7 depletion on the migration. Phosphorylation of AKT and Erk1/2 was also inversely regulated by IGFBP-7 expression. These two factors together suggest that IGFBP-7 can regulate glioma cell migration through the AKT-ERK pathway, thereby playing an important role in glioma growth and migration
Combination of Vatalanib and a 20-HETE Synthesis Inhibitor Results in Decreased Tumor Growth in an Animal Model of Human Glioma
BACKGROUND: Due to the hypervascular nature of glioblastoma (GBM), antiangiogenic treatments, such as vatalanib, have been added as an adjuvant to control angiogenesis and tumor growth. However, evidence of progressive tumor growth and resistance to antiangiogenic treatment has been observed. To counter the unwanted effect of vatalanib on GBM growth, we have added a new agent known as N-hydroxy-N\u27-(4-butyl-2 methylphenyl)formamidine (HET0016), which is a selective inhibitor of 20-hydroxyeicosatetraenoic acid (20-HETE) synthesis. The aims of the studies were to determine 1) whether the addition of HET0016 can attenuate the unwanted effect of vatalanib on tumor growth and 2) whether the treatment schedule would have a crucial impact on controlling GBM.
METHODS: U251 human glioma cells (4×10(5)) were implanted orthotopically. Two different treatment schedules were investigated. Treatment starting on day 8 (8-21 days treatment) of the tumor implantation was to mimic treatment following detection of tumor, where tumor would have hypoxic microenvironment and well-developed neovascularization. Drug treatment starting on the same day of tumor implantation (0-21 days treatment) was to mimic cases following radiation therapy or surgery. There were four different treatment groups: vehicle, vatalanib (oral treatment 50 mg/kg/d), HET0016 (intraperitoneal treatment 10 mg/kg/d), and combined (vatalanib and HET0016). Following scheduled treatments, all animals underwent magnetic resonance imaging on day 22, followed by euthanasia. Brain specimens were equally divided for immunohistochemistry and protein array analysis.
RESULTS: Our results demonstrated a trend that HET0016, alone or in combination with vatalanib, is capable of controlling the tumor growth compared with that of vatalanib alone, indicating attenuation of the unwanted effect of vatalanib. When both vatalanib and HET0016 were administered together on the day of the tumor implantation (0-21 days treatment), tumor volume, tumor blood volume, permeability, extravascular and extracellular space volume, tumor cell proliferation, and cell migration were decreased compared with that of the vehicle-treated group.
CONCLUSION: HET0016 is capable of controlling tumor growth and migration, but these effects are dependent on the timing of drug administration. The addition of HET0016 to vatalanib may attenuate the unwanted effect of vatalanib
Targeting integrins in malignant glioma
The integrin family of cell adhesion receptors is emerging as a promising target of anticancer therapy. AlphaVbeta3 and alphaVbeta5 integrins are overexpressed on both glioma cells and tumor vasculature. Cilengitide, the most advanced specific integrin inhibitor in oncology, has shown antitumor activity against glioma in early clinical trials. Durable remissions have been observed in phase I and phase II trials for recurrent glioblastoma (GBM) with both lower and higher doses of cilengitide. Pilot trials in newly diagnosed glioblastoma in conjunction with standard chemoradiotherapy have been encouraging. Preclinical data suggest synergy with concomitant chemo- and radiation therapy. A pivotal phase III study (CENTRIC) in newly diagnosed GBM patients is currently recruiting. This paper summarizes the current understanding of the role of integrins and their inhibition in gliomagenesis. The background and design of ongoing trials are outline
2024 Marine Energy Collegiate Competition
PolyWave Energy is the second team from California Polytechnic University at San Luis Obispo to compete in the Marine Energy Collegiate Competition. PolyWave Energy consists of Mechanical Engineering, Electrical Engineering, and Business Administration students who have worked together from September 2023 to May 2024 on designing, building, and testing a marine power device to serve a selected market.
In response to the escalating concerns surrounding carbon emissions, climate change, and the depletion of fossil fuels, California Polytechnic State University’s Polywave Energy team has developed a sustainable and reliable energy source for Autonomous Underwater Vehicle (AUV) charging. Through extensive research of the AUV market and stakeholder interviews, our team found that companies within the oil and gas industry would benefit most from our charging device.
The device is a rack and pinion wave energy converter. Featuring a floating portion in the water to capture the vertical motion of the waves, the device efficiently converts this motion into rotational energy. The rotational energy spins a generator, which stores electricity in a battery for AUV charging. The rotational and electrical systems will be mounted above the water on a fixed platform, and the relative motion between the floating portion and the fixed structure is used to create electricity.
In our project, we built a scaled down model of our device, scaled to meet the constraints of our testing setup. We tested our model on land, using wave data from the Gulf of Mexico, our target location for the device. Our team underwent extensive analysis to select and design components, ensuring that the device would be durable, safe, and effective in producing electricity. Numerous prototypes and iterations brought us to the final specifications of our device, for which our team procured the parts, fabricated, and assembled them. The device was tested under six conditions and successfully generated power in all conditions. The device functioned as expected, showing promise for future marine power generation and implementation in charging of AUVs
- …