148 research outputs found

    Relational Approach to Knowledge Engineering for POMDP-based Assistance Systems as a Translation of a Psychological Model

    Get PDF
    Assistive systems for persons with cognitive disabilities (e.g. dementia) are difficult to build due to the wide range of different approaches people can take to accomplishing the same task, and the significant uncertainties that arise from both the unpredictability of client's behaviours and from noise in sensor readings. Partially observable Markov decision process (POMDP) models have been used successfully as the reasoning engine behind such assistive systems for small multi-step tasks such as hand washing. POMDP models are a powerful, yet flexible framework for modelling assistance that can deal with uncertainty and utility. Unfortunately, POMDPs usually require a very labour intensive, manual procedure for their definition and construction. Our previous work has described a knowledge driven method for automatically generating POMDP activity recognition and context sensitive prompting systems for complex tasks. We call the resulting POMDP a SNAP (SyNdetic Assistance Process). The spreadsheet-like result of the analysis does not correspond to the POMDP model directly and the translation to a formal POMDP representation is required. To date, this translation had to be performed manually by a trained POMDP expert. In this paper, we formalise and automate this translation process using a probabilistic relational model (PRM) encoded in a relational database. We demonstrate the method by eliciting three assistance tasks from non-experts. We validate the resulting POMDP models using case-based simulations to show that they are reasonable for the domains. We also show a complete case study of a designer specifying one database, including an evaluation in a real-life experiment with a human actor

    Development of an automated speech recognition interface for personal emergency response systems

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Demands on long-term-care facilities are predicted to increase at an unprecedented rate as the baby boomer generation reaches retirement age. Aging-in-place (i.e. aging at home) is the desire of most seniors and is also a good option to reduce the burden on an over-stretched long-term-care system. Personal Emergency Response Systems (PERSs) help enable older adults to age-in-place by providing them with immediate access to emergency assistance. Traditionally they operate with push-button activators that connect the occupant via speaker-phone to a live emergency call-centre operator. If occupants do not wear the push button or cannot access the button, then the system is useless in the event of a fall or emergency. Additionally, a false alarm or failure to check-in at a regular interval will trigger a connection to a live operator, which can be unwanted and intrusive to the occupant. This paper describes the development and testing of an automated, hands-free, dialogue-based PERS prototype.</p> <p>Methods</p> <p>The prototype system was built using a ceiling mounted microphone array, an open-source automatic speech recognition engine, and a 'yes' and 'no' response dialog modelled after an existing call-centre protocol. Testing compared a single microphone versus a microphone array with nine adults in both noisy and quiet conditions. Dialogue testing was completed with four adults.</p> <p>Results and discussion</p> <p>The microphone array demonstrated improvement over the single microphone. In all cases, dialog testing resulted in the system reaching the correct decision about the kind of assistance the user was requesting. Further testing is required with elderly voices and under different noise conditions to ensure the appropriateness of the technology. Future developments include integration of the system with an emergency detection method as well as communication enhancement using features such as barge-in capability.</p> <p>Conclusion</p> <p>The use of an automated dialog-based PERS has the potential to provide users with more autonomy in decisions regarding their own health and more privacy in their own home.</p

    Skeletal Video Anomaly Detection using Deep Learning: Survey, Challenges and Future Directions

    Full text link
    The existing methods for video anomaly detection mostly utilize videos containing identifiable facial and appearance-based features. The use of videos with identifiable faces raises privacy concerns, especially when used in a hospital or community-based setting. Appearance-based features can also be sensitive to pixel-based noise, straining the anomaly detection methods to model the changes in the background and making it difficult to focus on the actions of humans in the foreground. Structural information in the form of skeletons describing the human motion in the videos is privacy-protecting and can overcome some of the problems posed by appearance-based features. In this paper, we present a survey of privacy-protecting deep learning anomaly detection methods using skeletons extracted from videos. We present a novel taxonomy of algorithms based on the various learning approaches. We conclude that skeleton-based approaches for anomaly detection can be a plausible privacy-protecting alternative for video anomaly detection. Lastly, we identify major open research questions and provide guidelines to address them.Comment: This work has been accepted by IEEE Transactions on Emerging Topics in Computational Intelligenc

    The development of an adaptive upper-limb stroke rehabilitation robotic system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Stroke is the primary cause of adult disability. To support this large population in recovery, robotic technologies are being developed to assist in the delivery of rehabilitation. This paper presents an automated system for a rehabilitation robotic device that guides stroke patients through an upper-limb reaching task. The system uses a decision theoretic model (a partially observable Markov decision process, or POMDP) as its primary engine for decision making. The POMDP allows the system to automatically modify exercise parameters to account for the specific needs and abilities of different individuals, and to use these parameters to take appropriate decisions about stroke rehabilitation exercises.</p> <p>Methods</p> <p>The performance of the system was evaluated by comparing the decisions made by the system with those of a human therapist. A single patient participant was paired up with a therapist participant for the duration of the study, for a total of six sessions. Each session was an hour long and occurred three times a week for two weeks. During each session, three steps were followed: (A) after the system made a decision, the therapist either agreed or disagreed with the decision made; (B) the researcher had the device execute the decision made by the therapist; (C) the patient then performed the reaching exercise. These parts were repeated in the order of A-B-C until the end of the session. Qualitative and quantitative question were asked at the end of each session and at the completion of the study for both participants.</p> <p>Results</p> <p>Overall, the therapist agreed with the system decisions approximately 65% of the time. In general, the therapist thought the system decisions were believable and could envision this system being used in both a clinical and home setting. The patient was satisfied with the system and would use this system as his/her primary method of rehabilitation.</p> <p>Conclusions</p> <p>The data collected in this study can only be used to provide insight into the performance of the system since the sample size was limited. The next stage for this project is to test the system with a larger sample size to obtain significant results.</p
    • …
    corecore