24 research outputs found

    C3–C4 composition and prior carbon dioxide treatment regulate the response of grassland carbon and water fluxes to carbon dioxide

    Get PDF
    During May, July and October 2000, we measured the effects of temporarily increasing or decreasing CO2 concentration by 150–200 μmol mol−1 on daytime net ecosystem CO2 exchange (NEE) and water flux (evapotranspiration, ET) of C3–C4 grassland in central Texas, USA that had been exposed for three growing seasons to a CO2 gradient from 200 to 560 μmol mol−1. Grassland grown at subambient CO2 (\u3c 365 μmol mol−1) was exposed for 2 days to an elevated CO2 gradient (\u3e 365 μmol mol−1). Grassland grown at elevated CO2 was exposed for 2 days to a subambient gradient. Our objective was to determine whether growth CO2 affected the amount by which grassland NEE and ET responded to CO2 switching (sensitivity to CO2)

    Net grassland carbon flux over a subambient to superambient CO2 gradient

    Get PDF
    Increasing atmospheric CO2 concentrations may have a profound effect on the structure and function of plant communities. A previously grazed, central Texas grassland was exposed to a 200-µmol mol-1 to 550 µmol mol-1 CO2 gradient from March to mid-December in 1998 and 1999 using two, 60-m long, polyethylene-covered chambers built directly onto the site. One chamber was operated at subambient CO2 concentrations (200-360 µmol mol-1 daytime) and the other was regulated at superambient concentrations (360-550 µmol mol-1). Continuous CO2 gradients were maintained in each chamber by photosynthesis during the day and respiration at night. Net ecosystem CO2 flux and end-of-year biomass were measured in each of 10, 5-m long sections in each chamber. Net CO2 fluxes were maximal in late May (c. day 150) in 1998 and in late August in 1999 (c. day 240). In both years, fluxes were near zero and similar in both chambers at the beginning and end of the growing season. Average daily CO2 flux in 1998 was 13 g CO2 m-2 day-1 in the subambient chamber and 20 g CO2 m-2 day-1 in the superambient chamber; comparable averages were 15 and 26 g CO2 m-2 day-1 in 1999. Flux was positively and linearly correlated with end-of-year above-ground biomass but flux was not linearly correlated with CO2 concentration; a finding likely to be explained by inherent differences in vegetation. Because C3 plants were the dominant functional group, we adjusted average daily flux in each section by dividing the flux by the average percentage C3 cover. Adjusted fluxes were better correlated with CO2 concentration, although scatter remained. Our results indicate that after accounting for vegetation differences, CO2 flux increased linearly with CO2 concentration. This trend was more evident at subambient than superambient CO2 concentrations

    Efluxo de CO2 do solo em floresta de transição Amazônia Cerrado e em área de pastagem Soil efflux CO2 in mature transitional tropical forest Amazônia and pasture area

    No full text
    O objetivo deste trabalho foi (a) estimar o efluxo de CO2 do solo em uma Floresta de Transição Amazônica Cerrado e em uma área de Pastagem localizadas no norte do Mato Grosso, e (b) verificar a influência da umidade e temperatura do solo, e serrapilheira acumulada no efluxo de CO2. As medições foram realizadas com aparelho de absorção de CO2 por infravermelho (EGM/WMA-2 PP System, Hitchin Hertz, UK) de maio/2005 a abril/2006. Os valores médios do efluxo de CO2 do solo na Floresta e na área de Pastagem foram de 5,45 e 4,95 µmolm-2s-1, respectivamente. Uma resposta satisfatória do efluxo de CO2 do solo e a serrapilheira acumulada, ocorreu somente na estação seca. Na estação seca o comportamento do efluxo de CO2 do solo foi semelhante na Floresta de Transição Amazônica Cerrado e na área de Pastagem, e na estação úmida os ecossistemas apresentaram comportamentos distintos, e o efluxo de CO2 do solo na área de Pastagem foi superior ao na Floresta de Transição. É essencial que se avalie a influência de outros fatores no efluxo de CO2 em ecossistemas localizados em um mesmo ecótono para a obtenção de novas respostas que contribuíam para esclarecer as dúvidas da emissão de CO2 em nível mundial.<br>The objective of this paper was (a) to estimate the CO2 soil efflux in a Mature Transitional Tropical Forest Amazonia and a area of Pasture in the north of the Mato Grosso; (b) to analyzer the influence of the soil humidity and temperature, and accumulated litter. The measurements had been carried through with device of CO2 absorption for infra-red ray (EGM/WMA-2 PP System, Hitchin Hertz, UK) in may/2005 to april/2006. The average values of the CO2 efflux of the ground in the Forest and the area of 5,45 and 4,94 µmolm-2s-1 Pasture µmolm-2s-1, respectively. In the dry season the behavior of the CO2 efflux of the ground was similar in the Mature Transitional Tropical Forest Amazonian and in the area of Pasture, and in the wet season the ecosystems had presented distinct behaviors, and the CO2 efflux of the ground in the area of Pasture was superior to the one in the Transitional Forest. It is essential that if it evaluates the influence of other factors in the CO2 efflux in ecosystems located in one same ecótono for the attainment of new answers that contribution to clarify doubt atmospheric CO2 emission to them the worldwide level

    Primary Productivity and Water Balance of Grassland Vegetation on Three Soils in a Continuous CO2 Gradient: Initial Results from the Lysimeter CO2 Gradient Experiment

    Get PDF
    Field studies of atmospheric CO2 effects on ecosystems usually include few levels of CO2 and a single soil type, making it difficult to ascertain the shape of responses to increasing CO2 or to generalize across soil types. The Lysimeter CO2 Gradient (LYCOG) chambers were constructed to maintain a linear gradient of atmospheric CO2 (~250 to 500 µ 1-1) on grassland vegetation established on intact soil monoliths from three soil series. The chambers maintained a linear daytime CO2 gradient from 263 µ 1-1 at the subambient end of the gradient to 502 µ 1-1 at the superambient end, as well as a linear nighttime CO2 gradient. Temperature variation within the chambers affected aboveground biomass and evapotranspiration, but the effects of temperature were small compared to the expected effects of CO2. Aboveground biomass on Austin soils was 40% less than on Bastrop and Houston soils. Biomass differences between soils resulted from variation in biomass of Sorghastrum nutans, Bouteloua curtipendula, Schizachyrium scoparium (C4 grasses), and Solidago canadensis (C3 forb), suggesting the CO2 sensitivity of these species may differ among soils. Evapotranspiration did not differ among the soils, but the CO2 sensitivity of leaf-level photosynthesis and water use efficiency in S. canadensis was greater on Houston and Bastrop than on Austin soils, whereas the CO2 sensitivity of soil CO2 efflux was greater on Bastrop soils than on Austin or Houston soils. The effects of soil type on CO2 sensitivitymay be smaller for some processes that are tightly coupled to microclimate. LYCOG is useful for discerning the effects of soil type on the CO2 sensitivity of ecosystem function in grasslands

    Quantification of CO\u3csub\u3e2\u3c/sub\u3e Exchange in Grassland Ecosystems of the World Using Tower Measurements, Modeling and Remote Sensing

    Get PDF
    Grasslands cover significant areas in nontropical regions, perform essential biogeochemical functions and represent important natural and agricultural resource. Nevertheless, in contrast to forests and agroecosystems, no flux measurement-based global summary of their CO2 exchange, sequestration potential, and role in mitigation of the greenhouse effect were available