17 research outputs found

    Application of metal, metal-oxide, and silicon-oxide based intermediate reflective layers for current matching in autonomous high-voltage multijunction photovoltaic devices

    No full text
    A logical next step for achieving a cost price reduction per Watt peak of photovoltaics (PV) is multijunction PV devices. In two-terminal multijunction PV devices, the photo-current generated in each subcell should be matched. Intermediate reflective layers (IRLs) are widely employed in multijunction devices to increase reflection at the interface between subcells to enhance current generation in the subcell(s) positioned before the IRL, in reference to the incident light. In this work, the results of over 65 multijunction devices are presented, in order to explore the effect of different current matching approaches. The influence of variations in absorber thickness as well as thickness variations of different IRLs based on silicon-oxide, various transparent conductive oxides (TCO), and metallic layers on all-silicon multijunction PV devices is studied. Specifically, hybrid, 2-terminal, monolithically integrated silicon heterojunction (SHJ) and thin film nanocrystalline silicon (nc-Si:H) and amorphous silicon (a-Si:H) tandem and triple junction devices are processed. Based on these experiments, certain design rules for optimal current matching operation in multijunction devices are formulated. Finally, taking these design rules into account, record all-silicon multijunction devices are processed. Conversion efficiencies close 15% and (Formula presented.) V are demonstrated for triple junction SHJ/nc-Si:H/a-Si:H devices. Such conversion efficiencies for a wireless, high-voltage wafer-based all-silicon 2-terminal multijunction PV device opens the way for efficient autonomous solar-to-fuel synthesis systems as well as other wireless innovative approaches in which the multijunction solar cell is used not only as a photovoltaic current-voltage generator, but also as an ion-exchange membrane, electrochemical catalysts, and/or optical transmittance filter.Photovoltaic Materials and Device

    Felix Based Readout of The Single-Phase Protodune Detector

    Get PDF
    The liquid argon Time Projection Chamber technique has matured and is now in use by several short-baseline neutrino experiments. This technology will be used in the long-baseline DUNE experiment; however, this experiment represents a large increase in scale, for which the technology needs to be validated explicitly. To this end, both the single-phase and dual-phase implementations of the technology are being tested at CERN in two full-scale (10 × 10 × 10 m3) ProtoDUNE setups. Besides the detector technology, these setups also allow for extensive tests of readout strategies. The Front-End LInk eXchange (FELIX) system was initially developed within the ATLAS collaboration and is based on custom FPGA-based PCIe I/O cards in combination with commodity servers. FELIX will be used in the single-phase ProtoDUNE setup to read the data coming from 2560 anode wires organized in a single Anode Plane Assembly structure. With a sampling rate of 2 MHz, the system must buffer and process an input rate of 74 Gb/s. Event building requests will arrive at a target rate of 25 Hz, and loss-less compression must reduce the data within the requested time windows before it is sent to the experiment’s event building farm. This paper discusses the design of the system as well as first operational experiences

    Felix Based Readout of The Single-Phase Protodune Detector

    No full text
    The liquid argon Time Projection Chamber technique has matured and is now in use by several short-baseline neutrino experiments. This technology will be used in the long-baseline DUNE experiment; however, this experiment represents a large increase in scale, for which the technology needs to be validated explicitly. To this end, both the single-phase and dual-phase implementations of the technology are being tested at CERN in two full-scale (10 × 10 × 10 m3) ProtoDUNE setups. Besides the detector technology, these setups also allow for extensive tests of readout strategies.The Front-End LInk eXchange (FELIX) system was initially developed within the ATLAS collaboration and is based on custom FPGA-based PCIe I/O cards in combination with commodity servers. FELIX will be used in the single-phase ProtoDUNE setup to read the data coming from 2560 anode wires organized in a single Anode Plane Assembly structure. With a sampling rate of 2 MHz, the system must buffer and process an input rate of 74 Gb/s. Event building requests will arrive at a target rate of 25 Hz, and loss-less compression must reduce the data within the requested time windows before it is sent to the experiment’s event building farm.This paper discusses the design of the system as well as first operational experiences.</jats:p

    Effects of Potent Neutralizing Antibodies from Convalescent Plasma in Patients Hospitalized for Severe SARS-CoV-2 Infection.

    No full text
    Abstract Convalescent plasma could be an inexpensive and widely available treatment for COVID-19 patients but reports on effectiveness are inconclusive. We collected convalescent plasma from donors with high titers of neutralizing anti-SARS-CoV-2 antibodies effectively blocking SARS-CoV-2 infection in vitro. In a randomized clinical trial of 86 COVID-19 patients, no overall clinical benefit of 300 mL convalescent plasma was found in patients hospitalized for COVID-19 in the Netherlands. Using a comprehensive translational approach, we unraveled the virological and immunological responses following plasma treatment which helps to understand which COVID-19 patients may benefit from this therapy and should be the focus of future studies. Convalescent plasma treatment in this patient group did not improve survival, had no effect on the clinical course of disease, nor did plasma enhance viral clearance in the respiratory tract, influence anti-SARS-CoV-2 antibody development or serum proinflammatory cytokines levels. The vast majority of patients already had potent neutralizing anti-SARS-CoV-2 antibodies at hospital admission and at comparable titers as the carefully selected plasma donors. Together, these data indicate that the variable effectivity observed in trials on convalescent plasma for COVID-19 may be explained by the timing of treatment and varying levels of preexisting anti-SARS-CoV-2 immunity in patients. It also substantiates that convalescent plasma should be studied as early as possible in the disease course or at least preceding the start of an autologous humoral response. Trial registration: Clinicaltrials.gov: NCT04342182</jats:p

    Effects of potent neutralizing antibodies from convalescent plasma in patients hospitalized for severe SARS-CoV-2 infection

    Get PDF
    In a randomized clinical trial of 86 hospitalized COVID-19 patients comparing standard care to treatment with 300mL convalescent plasma containing high titers of neutralizing SARS-CoV-2 antibodies, no overall clinical benefit was observed. Using a comprehensive translational approach, we unravel the virological and immunological responses following treatment to disentangle which COVID-19 patients may benefit and should be the focus of future studies. Convalescent plasma is safe, does not improve survival, has no effect on the disease course, nor does plasma enhance viral clearance in the respiratory tract, influence SARS-CoV-2 antibody development or serum proinflammatory cytokines levels. Here, we show that the vast majority of patients already had potent neutralizing SARS-CoV-2 antibodies at hospital admission and with comparable titers to carefully selected plasma donors. This resulted in the decision to terminate the trial prematurely. Treatment with convalescent plasma should be studied early in the disease course or at least preceding autologous humoral response development

    Effects of potent neutralizing antibodies from convalescent plasma in patients hospitalized for severe SARS-CoV-2 infection

    No full text
    In a randomized clinical trial of 86 hospitalized COVID-19 patients comparing standard care to treatment with 300mL convalescent plasma containing high titers of neutralizing SARS-CoV-2 antibodies, no overall clinical benefit was observed. Using a comprehensive translational approach, we unravel the virological and immunological responses following treatment to disentangle which COVID-19 patients may benefit and should be the focus of future studies. Convalescent plasma is safe, does not improve survival, has no effect on the disease course, nor does plasma enhance viral clearance in the respiratory tract, influence SARS-CoV-2 antibody development or serum proinflammatory cytokines levels. Here, we show that the vast majority of patients already had potent neutralizing SARS-CoV-2 antibodies at hospital admission and with comparable titers to carefully selected plasma donors. This resulted in the decision to terminate the trial prematurely. Treatment with convalescent plasma should be studied early in the disease course or at least preceding autologous humoral response development

    Effects of potent neutralizing antibodies from convalescent plasma in patients hospitalized for severe SARS-CoV-2 infection

    No full text
    AbstractIn a randomized clinical trial of 86 hospitalized COVID-19 patients comparing standard care to treatment with 300mL convalescent plasma containing high titers of neutralizing SARS-CoV-2 antibodies, no overall clinical benefit was observed. Using a comprehensive translational approach, we unravel the virological and immunological responses following treatment to disentangle which COVID-19 patients may benefit and should be the focus of future studies. Convalescent plasma is safe, does not improve survival, has no effect on the disease course, nor does plasma enhance viral clearance in the respiratory tract, influence SARS-CoV-2 antibody development or serum proinflammatory cytokines levels. Here, we show that the vast majority of patients already had potent neutralizing SARS-CoV-2 antibodies at hospital admission and with comparable titers to carefully selected plasma donors. This resulted in the decision to terminate the trial prematurely. Treatment with convalescent plasma should be studied early in the disease course or at least preceding autologous humoral response development.</jats:p

    Effects of potent neutralizing antibodies from convalescent plasma in patients hospitalized for severe SARS-CoV-2 infection

    No full text
    In a randomized clinical trial of 86 hospitalized COVID-19 patients comparing standard care to treatment with 300mL convalescent plasma containing high titers of neutralizing SARS-CoV-2 antibodies, no overall clinical benefit was observed. Using a comprehensive translational approach, we unravel the virological and immunological responses following treatment to disentangle which COVID-19 patients may benefit and should be the focus of future studies. Convalescent plasma is safe, does not improve survival, has no effect on the disease course, nor does plasma enhance viral clearance in the respiratory tract, influence SARS-CoV-2 antibody development or serum proinflammatory cytokines levels. Here, we show that the vast majority of patients already had potent neutralizing SARS-CoV-2 antibodies at hospital admission and with comparable titers to carefully selected plasma donors. This resulted in the decision to terminate the trial prematurely. Treatment with convalescent plasma should be studied early in the disease course or at least preceding autologous humoral response development.</p

    Pharmacological recanalization therapy in acute ischemic stroke – Evolution, current state and perspectives of intravenous and intra-arterial thrombolysis

    No full text
    corecore