10 research outputs found
The Yangian Bootstrap for Massive Feynman Diagrams
In dieser Dissertation erweitern wir die Ideen des Yangian-Bootstrap-Algorithmus auf Feynman-Diagramme mit massiven Teilchen.
Ausgehend von der massiven dual-konformen Symmetrie der N = 4 Super-Yang-Mills Theorie auf dem Coulomb-Zweig konstruieren wir einen Satz von bilokalen Yangian Level-Eins Generatoren und zeigen, dass sie eine unendliche Anzahl von planaren ein- und zwei-Schleifen-Diagrammen vernichten. Wir beschreiben außerdem wie der dual-konforme Level-Eins Impuls-Operator auf eine massive Verallgemeinerung des gewöhnlichen spezial-konformen Generators im Impulsraum abgebildet wird.
Als nächstes wenden wir den Yangian-Bootstrap-Algorithmus mit großem Erfolg auf eine Reihe von massiven Ein-Schleifen-Diagrammen mit verallgemeinerten Propagatorexponenten und in beliebiger Anzahl von Raumdimensionen an. Im Spezialfall der dual-konformen Integrale, deren Propagatorexponenten sich zur Raumdimension addieren, finden wir neue sehr einfache Darstellungen durch hypergeometrische Funktionen, die eine natürliche Verallgemeinerung für Diagramme mit beliebig vielen äußeren Punkten erlauben.
Außerdem diskutieren wir Aspekte des Yangian-Bootstrap-Algorithmus in Minkowski-Raumzeit am Beispiel des masselosen Box-Integrals. Wir zeigen, dass dessen Yangian-Symmetrie gemeinsam mit seinen diskreten Permutationssymmetrien das Box-Integrals bis auf 12 unbestimmte Konstanten komplett festlegt.
Schließlich schlagen wir vor, dass das Auftreten von Yangian-Symmetrie in massiven Fischnetz-Diagrammen mit deren Rolle als Ein-Spur-Streuamplituden in einer massiven Fischnetz-Theorie zusammenhängen könnte. In Analogie mit der masselosen Fischnetz-Theorie zeigen wir, wie diese Theorie als Deformation der N = 4 Super-Yang-Mills Theorie auf dem Coulomb-Zweig definiert werden kann. Wir diskutieren eine bestimmte Klasse von planaren Grenzfällen, in der die off-shell Streuamplituden der Theorie eine massive dual-konforme Symmetrie sowie Yangian-Symmetrie aufweisen.In this dissertation, we extend the ideas of the Yangian bootstrap algorithm to massive Feynman diagrams.
Based on the massive dual-conformal symmetry of Coulomb branch N = 4 super-Yang-Mills theory, we construct a set of bi-local Yangian level-one generators and show that they annihilate infinite classes of massive planar Feynman integrals at one and two loops. We also describe how the dual-conformal level-one momentum generator maps to a massive deformation of the ordinary momentum space special conformal generator.
We then apply the Yangian bootstrap to a set of massive one-loop integrals with generalised propagator powers and in an arbitrary number of space dimensions to great success. In the special case of dual-conformal integrals, whose propagator powers sum to the space dimension, we find very simple novel hypergeometric structures, suggesting a natural generalisation to diagrams with an arbitrary number of external points.
In the particular case of the massless box integral we also discuss elements of the Yangian bootstrap in Minkowski space. We show that its Yangian and discrete permutation symmetries constrain it up to 12 undetermined constants. We then derive the values of these constants via analytic continuation from the box integral in the Euclidean region.
Finally, we provide evidence that the appearance of Yangian symmetry for massive fishnet diagrams is related to their role as colour-ordered scattering amplitudes in a massive fishnet theory. We show how to construct this theory from Coulomb branch N = 4 super-Yang-Mills theory, paralleling the original construction of the massless fishnet theory. We discuss how a particular class of planar limits leads to the emergence of massive dual-conformal symmetry as well as massive Yangian symmetry for the theory’s off-shell scattering amplitudes
Consistent Conformal Extensions of the Standard Model
The question of whether classically conformal modifications of the standard
model are consistent with experimental obervations has recently been subject to
renewed interest. The method of Gildener and Weinberg provides a natural
framework for the study of the effective potential of the resulting
multi-scalar standard model extensions. This approach relies on the assumption
of the ordinary loop hierarchy of scalar
and gauge couplings. On the other hand, Andreassen, Frost and Schwartz recently
argued that in the (single-scalar) standard model, gauge invariant results
require the consistent scaling . In the
present paper we contrast these two hierarchy assumptions and illustrate the
differences in the phenomenological predictions of minimal conformal extensions
of the standard model.Comment: 20 pages, 19 figures. v2: Typo in (3.3) corrected, references adde
Massive Conformal Symmetry and Integrability for Feynman Integrals
In the context of planar holography, integrability plays an important role
for solving certain massless quantum field theories such as N=4 SYM theory. In
this letter we show that integrability also features in the building blocks of
massive quantum field theories. At one-loop order we prove that all massive
n-gon Feynman integrals in generic spacetime dimensions are invariant under a
massive Yangian symmetry. At two loops similar statements can be proven for
graphs built from two n-gons. At generic loop order we conjecture that all
graphs cut from regular tilings of the plane with massive propagators on the
boundary are invariant. We support this conjecture by a number of numerical
tests for higher loops and legs. The observed Yangian extends the bosonic part
of the massive dual conformal symmetry that was found a decade ago on the
Coulomb branch of N=4 SYM theory. By translating the Yangian level-one
generators from dual to original momentum space, we introduce a massive
generalization of momentum space conformal symmetry. Even for non-dual
conformal integrals this novel symmetry persists. The Yangian can thus be
understood as the closure of massive dual conformal symmetry and this new
massive momentum space conformal symmetry, which suggests an interpretation via
AdS/CFT. As an application of our findings, we bootstrap the hypergeometric
building blocks for examples of massive Feynman integrals.Comment: 6 pages, v2: typos corrected, clarifications added, v3: minor
improvements/corrections, title adapted to journal titl
Yangian Bootstrap for Massive Feynman Integrals
We extend the study of the recently discovered Yangian symmetry of massive
Feynman integrals and its relation to massive momentum space conformal
symmetry. After proving the symmetry statements in detail at one and two loop
orders, we employ the conformal and Yangian constraints to bootstrap various
one-loop examples of massive Feynman integrals. In particular, we explore the
interplay between Yangian symmetry and hypergeometric expressions of the
considered integrals. Based on these examples we conjecture single series
representations for all dual conformal one-loop integrals in D spacetime
dimensions with generic massive propagators.Comment: 61 page
A computation of two-loop six-point Feynman integrals in dimensional regularization
We compute three families of two-loop six-point massless Feynman integrals in
dimensional regularization, namely the double-box, the pentagon-triangle, and
the hegaxon-bubble family. This constitutes the first analytic computation of
two-loop master integrals with eight scales. We use the method of canonical
differential equations. We describe the corresponding integral basis with
uniform transcendentality, the relevant function alphabet, and analytic
boundary values at a particular point in the Euclidean region up to the fourth
order in the regularization parameter . The results are expressed as
one-fold integrals over classical polylogarithms suitable for fast and
high-precision evaluation.Comment: 35 pages, 5 figure
One-loop hexagon integral to higher orders in the dimensional regulator
Abstract The state-of-the-art in current two-loop QCD amplitude calculations is at five-particle scattering. Computing two-loop six-particle processes requires knowledge of the corresponding one-loop amplitudes to higher orders in the dimensional regulator. In this paper we compute analytically the one-loop hexagon integral via differential equations. In particular we identify its function alphabet for general D-dimensional external states. We also provide integral representations for all one-loop integrals up to weight four. With this, the one-loop integral basis is ready for two-loop amplitude applications. We also study in detail the difference between the conventional dimensional regularization and the four-dimensional helicity scheme at the level of the master integrals and their function space
A computation of two-loop six-point Feynman integrals in dimensional regularization
Abstract We compute three families of two-loop six-point massless Feynman integrals in dimensional regularization, namely the double-box, the pentagon-triangle, and the hegaxon-bubble family. This constitutes the first analytic computation of two-loop master integrals with eight scales. We use the method of canonical differential equations. We describe the corresponding integral basis with uniform transcendentality, the relevant function alphabet, and analytic boundary values at a particular point in the Euclidean region up to the fourth order in the regularization parameter ϵ. The results are expressed as one-fold integrals over classical polylogarithms. We provide a set of supplementary files containing our results in machine-readable form, including a proof-of-concept implementation for numerical evaluations of the one-fold integrals valid within a subset of the Euclidean region