3,205 research outputs found
The Role of Spin Anisotropy in the Unbinding of Interfaces
We study the ground state of a classical X-Y model with -fold spin
anisotropy in a uniform external field, . An interface is introduced
into the system by a suitable choice of boundary conditions. For large , as
, we prove using an expansion in that the interface unbinds
from the surface through an infinite series of layering transitions. Numerical
work shows that the transitions end in a sequence of critical end points.Comment: 7 pages RevTeX, plus 1 postscript figure available from the authors
OUTP-94-41
A novel iterative strategy for protein design
We propose and discuss a novel strategy for protein design. The method is
based on recent theoretical advancements which showed the importance to treat
carefully the conformational free energy of designed sequences. In this work we
show how computational cost can be kept to a minimum by encompassing negative
design features, i.e. isolating a small number of structures that compete
significantly with the target one for being occupied at low temperature. The
method is succesfully tested on minimalist protein models and using a variety
of amino acid interaction potentials.Comment: 9 pages, 8 figure
The Role of Non-native Interactions in the Folding of Knotted Proteins
Stochastic simulations of coarse-grained protein models are used to
investigate the propensity to form knots in early stages of protein folding.
The study is carried out comparatively for two homologous
carbamoyltransferases, a natively-knotted N-acetylornithine
carbamoyltransferase (AOTCase) and an unknotted ornithine carbamoyltransferase
(OTCase). In addition, two different sets of pairwise amino acid interactions
are considered: one promoting exclusively native interactions, and the other
additionally including non-native quasi-chemical and electrostatic
interactions. With the former model neither protein show a propensity to form
knots. With the additional non-native interactions, knotting propensity remains
negligible for the natively-unknotted OTCase while for AOTCase it is much
enhanced. Analysis of the trajectories suggests that the different entanglement
of the two transcarbamylases follows from the tendency of the C-terminal to
point away from (for OTCase) or approach and eventually thread (for AOTCase)
other regions of partly-folded protein. The analysis of the OTCase/AOTCase pair
clarifies that natively-knotted proteins can spontaneously knot during early
folding stages and that non-native sequence-dependent interactions are
important for promoting and disfavoring early knotting events.Comment: Accepted for publication on PLOS Computational Biolog
Elucidation of the disulfide folding pathway of hirudin by a topology-based approach
A theoretical model for the folding of proteins containing disulfide bonds is
introduced. The model exploits the knowledge of the native state to favour the
progressive establishment of native interactions. At variance with traditional
approaches based on native topology, not all native bonds are treated in the
same way; in particular, a suitable energy term is introduced to account for
the special strength of disulfide bonds (irrespective of whether they are
native or not) as well as their ability to undergo intra-molecular reshuffling.
The model thus possesses the minimal ingredients necessary to investigated the
much debated issue of whether the re-folding process occurs through partially
structured intermediates with native or non-native disulfide bonds. This
strategy is applied to a context of particular interest, the re-folding process
of Hirudin, a thrombin-specific protease inhibitor, for which conflicting
folding pathways have been proposed. We show that the only two parameters in
the model (temperature and disulfide strength) can be tuned to reproduce well a
set of experimental transitions between species with different number of formed
disulfide. This model is then used to provide a characterisation of the folding
process and a detailed description of the species involved in the rate-limiting
step of Hirudin refolding.Comment: 14 pages, 9 figure
Topological jamming of spontaneously knotted polyelectrolyte chains driven through a nanopore
The advent of solid state nanodevices allows for interrogating the
physico-chemical properties of a polyelectrolyte chain by electrophoretically
driving it through a nanopore. Salient dynamical aspects of the translocation
process have been recently characterized by theoretical and computational
studies of model polymer chains free from self-entanglement. However,
sufficiently long equilibrated chains are necessarily knotted. The impact of
such topological "defects" on the translocation process is largely unexplored,
and is addressed in this study. By using Brownian dynamics simulations on a
coarse-grained polyelectrolyte model we show that knots, despite being trapped
at the pore entrance, do not "per se" cause the translocation process to jam.
Rather, knots introduce an effective friction that increases with the applied
force, and practically halts the translocation above a threshold force. The
predicted dynamical crossover, which is experimentally verifiable, is of
relevance in applicative contexts, such as DNA nanopore sequencing.Comment: 6 pages; 7 figure
Methyl 9-(1-methyl-1H-indol-3-yl)-9-oxononanoate
Methyl 9-(1-methyl-1H-indol-3-yl)-9-oxononanoate was synthesized using Friedel-Crafts acylation between N-methyl indole and methyl 9-chloro-9-oxononanoate. The structure of the newly synthesized compound was elucidated using H-1-NMR, C-13-NMR, NOESY-1D, ESI-MS, FT-IR, and UV-Vis spectroscopy
- …