109 research outputs found
A triterpene saponin from "Lysimachia thyrsiflora L."
A triterpene saponoside (LTS-4) isolated from the underground parts of Lysimachia thyrsiflora L. was defined as 3-O-{β-D-xylopyranosyl-(1→2)-β-D-glucopyranosyl-(1→4)-[β-D-glucopyranosyl-(1→2)]-α- L-arabinopyranosyl}-cyclamiretin A. Structure assignment was performed on the basis of spectroscopic data including homo- and heteronuclear 1D and 2D NMR (COSY, TOCSY, NOESY, HETCOR, HMBC and DEPT) and FAB-MS studies. The compound was tested in vitro for antimicrobial and cytotoxic activity
Bronchial fibroblasts from asthmatic patients display impaired responsiveness to direct current electric fields (dcEFs)
Accumulating evidence suggests that an important role is played by electric signals in modifying cell behaviour during developmental, regenerative and pathological processes. However, their role in asthma has not yet been addressed. Bronchial fibroblasts have recently been identified having important roles in asthma development. Therefore, we adapted an experimental approach based on the lineages of human bronchial fibroblasts (HBF) derived from non-asthmatic (NA) donors and asthmatic (AS) patients to elucidate whether their reactivity to direct current electric fields (dcEF) could participate in the asthmatic process. The efficient responsiveness of NA HBF to an electric field in the range of 2-4 V/cm was illustrated based on the perpendicular orientation of long axes of the cells to the field lines and their directional movement towards the anode. These responses were related to the activity of TGF- signalling, as the electrotaxis and re-orientation of NA HBF polarity was impaired by the inhibitors of canonical and non-canonical TGF- -dependent pathways. A similar tendency towards perpendicular cell-dcEF orientation was observed for AS HBF. However, their motility remained insensitive to the electric field applied at 2-4 V/cm. Collectively, these observations demonstrate the sensitivity of NA HBF to dcEF, as well as the inter-relations between this parameter and the canonical and non-canonical TGF- pathways, and the differences between the electrotactic responses of NA and AS HBF point to the possible role of their dcEFs in desensitisation in the asthmatic process. This process may impair the physiologic behaviour of AS HBF functions, including cell motility, ECM deposition, and contractility, thus promoting bronchial wall remodelling, which is a characteristic of bronchial asthma
Lclet 4 enhances pro-apoptotic and anti-invasive effects of mitoxantrone on human prostate cancer cells : in vitro study
Triterpene saponosides are widely distributed plant secondary metabolites characterized by relatively low systemic cytotoxicity and a range of biological activities. These include anti-inflammatory, antimicrobial, vasoprotective and antitumor properties. In particular, the ability of saponins to enhance the cytotoxicity of chemotherapeutic drugs opened perspectives for their application in combined cancer chemotherapy. Here, we used human prostate cancer DU-145 cells as an in vitro model to elucidate the synergy of the interactions between biological activities of an oleanane type 13β,28-epoxy triterpene saponoside (Lclet 4) and mitoxantrone, which is a cytostatic drug commonly used in prostate cancer therapy. No cytotoxic or pro-apoptotic effect of Lclet 4 and mitoxantrone administered at the concentrations between 0.05 and 0.1 µg/ml could be seen. In contrast, cocktails of these agents exerted synergistic pro-apoptotic effects, accompanied by the activation of the caspase 3/7 system. This effect was paralleled by attenuating effects of Lclet 4/mitoxantrone cocktails on the invasive potential, metalloproteinase expression and motility of DU-145 cells. Multifaceted and additive effects of Lclet 4 and mitoxantrone on basic cellular traits crucial for prostate cancer progression indicate that the combined application of both agents at systemically neutral concentrations may provide the basis for new promising strategies of prostate cancer chemotherapy
- …